使用Numpy进行深度学习中5大反向传播优化算法的性能比较(二)

简介: 使用Numpy进行深度学习中5大反向传播优化算法的性能比较(二)

2、Momentum

动量梯度下降是一种常用的优化器,它消除了标准梯度下降引起的振荡,加速了收敛最优点。当它在水平方向上加速时,它在垂直方向上减速。在这种杰出行为的帮助下,它使我们在学习率的方向上迈出了一大步。此外,动量比标准梯度下降要稳定得多。

下面给出的方程式解释了更新规则-

image.png

v1,v2=0,0
gamma,lr=0.5,0.4
x1,x2=-4,-6
l1_gd_m,l2_gd_m=[],[]
for i in range(20):
  l1_gd_m.append(x1)
  l2_gd_m.append(x2)
  v1=gamma*v1+(0.2*x1)
  v2=gamma*v2+(4*x2)
  x1=x1-lr*v1
  x2=x2-lr*v2u

Gradient Descent vs Momentum

image.png9

import matplotlib.pyplot as plt
import numpy as np
fig = plt.figure(figsize=(13,6))
left, bottom, width, height = 100, 0.1, 0.8, 0.8
ax = fig.add_axes([left, bottom, width, height])
start, stop, n_values = -8, 8, 100
x_vals = np.linspace(start, stop, n_values)
y_vals = np.linspace(start, stop, n_values)
X, Y = np.meshgrid(x_vals, y_vals)
Z = np.sqrt(0.1*X**2 + 2*Y**2)
plt.contourf(X,Y,Z,)
plt.plot(l1_gd[:15],l2_gd[:15],color="red",marker="*",markeredgecolor="black",linewidth=3,label="Gradient Descent")
plt.plot(l1_gd_m[:15],l2_gd_m[:15],color="yellow",marker="*",markeredgecolor="orange",linewidth=3,label="Gradient Descent (Momentum =0.5)")
plt.figure(figsize=(15,10))
plt.figure(figsize=(15,10))
ax.set_title('Level Sets of the Function',size=20)
ax.set_xlabel('x (cm)')
ax.set_ylabel('y (cm)')
ax.legend()
plt.show()

3、Adagrad

自适应梯度下降算法(adaptive gradient descent)是一种学者梯度下降算法。其主要区别在于Adagrad根据网络中参数的重要性对每个权值利用不同的学习速率。换句话说,用较高的学习率训练不必要的参数,用较小的学习率训练重要参数,使其更稳定地收敛。在不允许失真的情况下,实现了算法的加速。更新公式类似于动量,这里每一步的动量是用之前的动量和梯度的平方来计算的。下面的公式显示了Adagrad中的更新规则。

image.png

Gt是一个对角矩阵组成的平方和过去的渐变和ϵ平滑项。此外,表示矩阵-向量积运算。

v1,v2=0,0
gamma,lr=0.9,0.4
x1,x2=-4,-6
l1_adagrad,l2_adagrad=[],[]
for i in range(20):
  l1_adagrad.append(x1)
  l2_adagrad.append(x2)
  v1=v1+(0.2*x1)**2
  v2=v2+(4*x2)**2
  x1=x1-(lr/math.sqrt(v1+c))*0.2*x1
  x2=x2-(lr/math.sqrt(v2+c))*4*x2

Momentum vs Adagrad

image.png

import matplotlib.pyplot as plt
import numpy as np
fig = plt.figure(figsize=(13,6))
left, bottom, width, height = 100, 0.1, 0.8, 0.8
ax = fig.add_axes([left, bottom, width, height])
start, stop, n_values = -8, 8, 100
x_vals = np.linspace(start, stop, n_values)
y_vals = np.linspace(start, stop, n_values)
X, Y = np.meshgrid(x_vals, y_vals)
Z = np.sqrt(0.1*X**2 + 2*Y**2)
plt.contourf(X,Y,Z,)
plt.plot(l1_gd[:15],l2_gd[:15],color="red",marker="*",markeredgecolor="black",linewidth=3,label="Gradient Descent")
plt.plot(l1_gd_m[:15],l2_gd_m[:15],color="yellow",marker="*",markeredgecolor="orange",linewidth=3,label="Gradient Descent (Momentum =0.5)")
plt.plot(l1_adagrad[:15],l2_adagrad[:15],color="blue",marker="*",markeredgecolor="black",linewidth=3,label="Adagrad")
plt.figure(figsize=(15,10))
plt.figure(figsize=(15,10))
ax.set_title('Level Sets of the Function',size=20)
ax.set_xlabel('x (cm)')
ax.set_ylabel('y (cm)')
ax.legend()
plt.show()

从上图中可以看出,Adagrad虽然运动平稳无振荡,但收敛能力不足。为了解决这个问题,Geoffrey Hinton引入了一个更有效的优化器RMSprop。

目录
相关文章
|
3月前
|
机器学习/深度学习 数据采集 人工智能
深度学习实战指南:从神经网络基础到模型优化的完整攻略
🌟 蒋星熠Jaxonic,AI探索者。深耕深度学习,从神经网络到Transformer,用代码践行智能革命。分享实战经验,助你构建CV、NLP模型,共赴二进制星辰大海。
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
1155 55
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
眼疾识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了4种常见的眼疾图像数据集(白内障、糖尿病性视网膜病变、青光眼和正常眼睛) 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张眼疾图片识别其名称。
602 5
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
|
11月前
|
机器学习/深度学习 数据采集 自然语言处理
深度学习实践技巧:提升模型性能的详尽指南
深度学习模型在图像分类、自然语言处理、时间序列分析等多个领域都表现出了卓越的性能,但在实际应用中,为了使模型达到最佳效果,常规的标准流程往往不足。本文提供了多种深度学习实践技巧,包括数据预处理、模型设计优化、训练策略和评价与调参等方面的详细操作和代码示例,希望能够为应用实战提供有效的指导和支持。
|
11月前
|
机器学习/深度学习 人工智能 算法
深度学习用于求解车间调度问题,性能如何呢?
基于深度学习来求解车间调度问题,不仅求解速度快,求解的质量也越来越好
575 24
|
10月前
|
机器学习/深度学习 存储 算法
基于MobileNet深度学习网络的活体人脸识别检测算法matlab仿真
本内容主要介绍一种基于MobileNet深度学习网络的活体人脸识别检测技术及MQAM调制类型识别方法。完整程序运行效果无水印,需使用Matlab2022a版本。核心代码包含详细中文注释与操作视频。理论概述中提到,传统人脸识别易受非活体攻击影响,而MobileNet通过轻量化的深度可分离卷积结构,在保证准确性的同时提升检测效率。活体人脸与非活体在纹理和光照上存在显著差异,MobileNet可有效提取人脸高级特征,为无线通信领域提供先进的调制类型识别方案。
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
625 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
11月前
|
机器学习/深度学习 运维 资源调度
深度学习在资源利用率优化中的应用:让服务器更聪明
深度学习在资源利用率优化中的应用:让服务器更聪明
523 6
|
11月前
|
机器学习/深度学习 算法 安全
基于深度学习的路面裂缝检测算法matlab仿真
本项目基于YOLOv2算法实现高效的路面裂缝检测,使用Matlab 2022a开发。完整程序运行效果无水印,核心代码配有详细中文注释及操作视频。通过深度学习技术,将目标检测转化为回归问题,直接预测裂缝位置和类别,大幅提升检测效率与准确性。适用于实时检测任务,确保道路安全维护。 简介涵盖了算法理论、数据集准备、网络训练及检测过程,采用Darknet-19卷积神经网络结构,结合随机梯度下降算法进行训练。
|
机器学习/深度学习 算法 信息无障碍
基于GoogleNet深度学习网络的手语识别算法matlab仿真
本项目展示了基于GoogleNet的深度学习手语识别算法,使用Matlab2022a实现。通过卷积神经网络(CNN)识别手语手势,如"How are you"、"I am fine"、"I love you"等。核心在于Inception模块,通过多尺度处理和1x1卷积减少计算量,提高效率。项目附带完整代码及操作视频。