Tensorflow卷积实现原理+手写python代码实现卷积

简介: Tensorflow卷积实现原理+手写python代码实现卷积

Tensorflow卷积实现原理+手写python代码实现卷积


最近看到一个巨牛的人工智能教程,分享一下给大家。教程不仅是零基础,通俗易懂,而且非常风趣幽默,像看小说一样!觉得太牛了,所以分享给大家。平时碎片时间可以当小说看,【点这里可以去膜拜一下大神的“小说”】。

从一个通道的图片进行卷积生成新的单通道图的过程很容易理解,对于多个通道卷积后生成多个通道的图理解起来有点抽象。本文以通俗易懂的方式讲述卷积,并辅以图片解释,能快速理解卷积的实现原理。最后手写python代码实现卷积过程,让Tensorflow卷积在我们面前不再是黑箱子!

注意:

本文只针对batch_size=1,padding='SAME',stride=[1,1,1,1]进行实验和解释,其他如果不是这个参数设置,原理也是一样。

1 Tensorflow卷积实现原理

先看一下卷积实现原理,对于in_c个通道的输入图,如果需要经过卷积后输出out_c个通道图,那么总共需要in_c * out_c个卷积核参与运算。参考下图:

如上图,输入为[h:5,w:5,c:4],那么对应输出的每个通道,需要4个卷积核。上图中,输出为3个通道,所以总共需要3*4=12个卷积核。对于单个输出通道中的每个点,取值为对应的一组4个不同的卷积核经过卷积计算后的和。

接下来,我们以输入为2个通道宽高分别为5的输入、3*3的卷积核、1个通道宽高分别为5的输出,作为一个例子展开。

2个通道,5*5的输入定义如下:

#输入,shape=[c,h,w]
input_data=[
              [[1,0,1,2,1],
               [0,2,1,0,1],
               [1,1,0,2,0],
               [2,2,1,1,0],
               [2,0,1,2,0]],
               [[2,0,2,1,1],
                [0,1,0,0,2],
                [1,0,0,2,1],
                [1,1,2,1,0],
                [1,0,1,1,1]],
            ]

对于输出为1通道map,根据前面计算方法,需要2*1个卷积核。定义卷积核如下:

#卷积核,shape=[in_c,k,k]=[2,3,3]
weights_data=[ 
               [[ 1, 0, 1],
                [-1, 1, 0],
                [ 0,-1, 0]],
               [[-1, 0, 1],
                [ 0, 0, 1],
                [ 1, 1, 1]] 
             ]

上面定义的数据,在接下来的计算对应关系将按下图所描述的方式进行。

由于Tensorflow定义的tensor的shape为[n,h,w,c],这里我们可以直接把n设为1,即batch size为1。还有一个问题,就是我们刚才定义的输入为[c,h,w],所以需要将[c,h,w]转为[h,w,c]。转换方式如下,注释已经解释很详细,这里不再解释。

def get_shape(tensor):
    [s1,s2,s3]= tensor.get_shape() 
    s1=int(s1)
    s2=int(s2)
    s3=int(s3)
    return s1,s2,s3
def chw2hwc(chw_tensor): 
    [c,h,w]=get_shape(chw_tensor) 
    cols=[]
    for i in range(c):
        #每个通道里面的二维数组转为[w*h,1]即1列 
        line = tf.reshape(chw_tensor[i],[h*w,1])
        cols.append(line)
    #横向连接,即将所有竖直数组横向排列连接
    input = tf.concat(cols,1)#[w*h,c]
    #[w*h,c]-->[h,w,c]
    input = tf.reshape(input,[h,w,c])
    return input

同理,Tensorflow使用卷积核的时候,使用的格式是[k,k,in_c,out_c]。而我们在定义卷积核的时候,是按[in_c,k,k]的方式定义的,这里需要将[in_c,k,k]转为[k,k,in_c],由于为了简化工作量,我们规定输出为1个通道,即out_c=1。所以这里我们可以直接简单地对weights_data调用chw2hwc,再在第3维度扩充一下即可。

接下来,贴出完整的代码:

import tensorflow as tf
import numpy as np
input_data=[
              [[1,0,1,2,1],
               [0,2,1,0,1],
               [1,1,0,2,0],
               [2,2,1,1,0],
               [2,0,1,2,0]],
               [[2,0,2,1,1],
                [0,1,0,0,2],
                [1,0,0,2,1],
                [1,1,2,1,0],
                [1,0,1,1,1]],
            ]
weights_data=[ 
               [[ 1, 0, 1],
                [-1, 1, 0],
                [ 0,-1, 0]],
               [[-1, 0, 1],
                [ 0, 0, 1],
                [ 1, 1, 1]] 
           ]
def get_shape(tensor):
    [s1,s2,s3]= tensor.get_shape() 
    s1=int(s1)
    s2=int(s2)
    s3=int(s3)
    return s1,s2,s3
def chw2hwc(chw_tensor): 
    [c,h,w]=get_shape(chw_tensor) 
    cols=[]
    for i in range(c):
        #每个通道里面的二维数组转为[w*h,1]即1列 
        line = tf.reshape(chw_tensor[i],[h*w,1])
        cols.append(line)
    #横向连接,即将所有竖直数组横向排列连接
    input = tf.concat(cols,1)#[w*h,c]
    #[w*h,c]-->[h,w,c]
    input = tf.reshape(input,[h,w,c])
    return input
def hwc2chw(hwc_tensor):
    [h,w,c]=get_shape(hwc_tensor) 
    cs=[] 
    for i in range(c): 
        #[h,w]-->[1,h,w] 
        channel=tf.expand_dims(hwc_tensor[:,:,i],0)
        cs.append(channel)
    #[1,h,w]...[1,h,w]---->[c,h,w]
    input = tf.concat(cs,0)#[c,h,w]
    return input
def tf_conv2d(input,weights):
    conv = tf.nn.conv2d(input, weights, strides=[1, 1, 1, 1], padding='SAME')
    return conv
def main(): 
    const_input = tf.constant(input_data , tf.float32)
    const_weights = tf.constant(weights_data , tf.float32 )
    input = tf.Variable(const_input,name="input")
    #[2,5,5]------>[5,5,2]
    input=chw2hwc(input)
    #[5,5,2]------>[1,5,5,2]
    input=tf.expand_dims(input,0)
    weights = tf.Variable(const_weights,name="weights")
    #[2,3,3]-->[3,3,2]
    weights=chw2hwc(weights)
    #[3,3,2]-->[3,3,2,1]
    weights=tf.expand_dims(weights,3) 
    #[b,h,w,c]
    conv=tf_conv2d(input,weights)
    rs=hwc2chw(conv[0]) 
    init=tf.global_variables_initializer()
    sess=tf.Session()
    sess.run(init)
    conv_val = sess.run(rs)
    print(conv_val[0]) 
if __name__=='__main__':
    main()

上面代码有几个地方需要提一下,

由于输出通道为1,因此可以对卷积核数据转换的时候直接调用chw2hwc,如果输入通道不为1,则不能这样完成转换。

输入完成chw转hwc后,记得在第0维扩充维数,因为卷积要求输入为[n,h,w,c]

为了方便我们查看结果,记得将hwc的shape转为chw

执行上面代码,运行结果如下:

[[ 2.  0.  2.  4.  0.]
 [ 1.  4.  4.  3.  5.]
 [ 4.  3.  5.  9. -1.]
 [ 3.  4.  6.  2.  1.]
 [ 5.  3.  5.  1. -2.]]

这个计算结果是怎么计算出来的?为了让大家更清晰的学习其中细节,我特地制作了一个GIF图,看完这个图后,如果你还看不懂卷积的计算过程,你可以来打我。。。。

2 手写Python代码实现卷积

自己实现卷积时,就无须将定义的数据[c,h,w]转为[h,w,c]了。

import numpy as np
input_data=[
              [[1,0,1,2,1],
               [0,2,1,0,1],
               [1,1,0,2,0],
               [2,2,1,1,0],
               [2,0,1,2,0]],
               [[2,0,2,1,1],
                [0,1,0,0,2],
                [1,0,0,2,1],
                [1,1,2,1,0],
                [1,0,1,1,1]] 
            ]
weights_data=[ 
               [[ 1, 0, 1],
                [-1, 1, 0],
                [ 0,-1, 0]],
               [[-1, 0, 1],
                [ 0, 0, 1],
                [ 1, 1, 1]] 
           ]
#fm:[h,w]
#kernel:[k,k]
#return rs:[h,w] 
def compute_conv(fm,kernel):
    [h,w]=fm.shape
    [k,_]=kernel.shape 
    r=int(k/2)
    #定义边界填充0后的map
    padding_fm=np.zeros([h+2,w+2],np.float32)
    #保存计算结果
    rs=np.zeros([h,w],np.float32)
    #将输入在指定该区域赋值,即除了4个边界后,剩下的区域
    padding_fm[1:h+1,1:w+1]=fm 
    #对每个点为中心的区域遍历
    for i in range(1,h+1):
        for j in range(1,w+1): 
            #取出当前点为中心的k*k区域
            roi=padding_fm[i-r:i+r+1,j-r:j+r+1]
            #计算当前点的卷积,对k*k个点点乘后求和
            rs[i-1][j-1]=np.sum(roi*kernel)
    return rs
def my_conv2d(input,weights):
    [c,h,w]=input.shape
    [_,k,_]=weights.shape
    outputs=np.zeros([h,w],np.float32)
    #对每个feature map遍历,从而对每个feature map进行卷积
    for i in range(c):
        #feature map==>[h,w]
        f_map=input[i]
        #kernel ==>[k,k]
        w=weights[i]
        rs =compute_conv(f_map,w)
        outputs=outputs+rs   
    return outputs
def main():  
    #shape=[c,h,w]
    input = np.asarray(input_data,np.float32)
    #shape=[in_c,k,k]
    weights =  np.asarray(weights_data,np.float32) 
    rs=my_conv2d(input,weights) 
    print(rs) 
if __name__=='__main__':
    main() 

代码无须太多解释,直接看注释。然后跑出来的结果如下:

[[ 2.  0.  2.  4.  0.]
 [ 1.  4.  4.  3.  5.]
 [ 4.  3.  5.  9. -1.]
 [ 3.  4.  6.  2.  1.]
 [ 5.  3.  5.  1. -2.]]

对比发现,跟Tensorflow的卷积结果是一样的。

3 小结

本文中,我们学习了Tensorflow的卷积实现原理,通过也通过python代码实现了输出通道为1的卷积,其实输出通道数不影响我们学习卷积原理。后面如果有机会的话,我们去实现一个更加健全,完整的卷积。

相关文章
|
3月前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
411 55
|
2月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
眼疾识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了4种常见的眼疾图像数据集(白内障、糖尿病性视网膜病变、青光眼和正常眼睛) 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张眼疾图片识别其名称。
185 5
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
|
23天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
蘑菇识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了9种常见的蘑菇种类数据集【"香菇(Agaricus)", "毒鹅膏菌(Amanita)", "牛肝菌(Boletus)", "网状菌(Cortinarius)", "毒镰孢(Entoloma)", "湿孢菌(Hygrocybe)", "乳菇(Lactarius)", "红菇(Russula)", "松茸(Suillus)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,
84 11
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
|
9天前
|
数据采集 供应链 API
实战指南:通过1688开放平台API获取商品详情数据(附Python代码及避坑指南)
1688作为国内最大的B2B供应链平台,其API为企业提供合法合规的JSON数据源,直接获取批发价、SKU库存等核心数据。相比爬虫方案,官方API避免了反爬严格、数据缺失和法律风险等问题。企业接入1688商品API需完成资质认证、创建应用、签名机制解析及调用接口四步。应用场景包括智能采购系统、供应商评估模型和跨境选品分析。提供高频问题解决方案及安全合规实践,确保数据安全与合法使用。立即访问1688开放平台,解锁B2B数据宝藏!
|
10天前
|
API 开发工具 Python
【Azure Developer】编写Python SDK代码实现从China Azure中VM Disk中创建磁盘快照Snapshot
本文介绍如何使用Python SDK为中国区微软云(China Azure)中的虚拟机磁盘创建快照。通过Azure Python SDK的Snapshot Class,指定`location`和`creation_data`参数,使用`Copy`选项从现有磁盘创建快照。代码示例展示了如何配置Default Azure Credential,并设置特定于中国区Azure的`base_url`和`credential_scopes`。参考资料包括官方文档和相关API说明。
|
2月前
|
存储 缓存 Java
Python高性能编程:五种核心优化技术的原理与Python代码
Python在高性能应用场景中常因执行速度不及C、C++等编译型语言而受质疑,但通过合理利用标准库的优化特性,如`__slots__`机制、列表推导式、`@lru_cache`装饰器和生成器等,可以显著提升代码效率。本文详细介绍了这些实用的性能优化技术,帮助开发者在不牺牲代码质量的前提下提高程序性能。实验数据表明,这些优化方法能在内存使用和计算效率方面带来显著改进,适用于大规模数据处理、递归计算等场景。
78 5
Python高性能编程:五种核心优化技术的原理与Python代码
|
3月前
|
Python
课程设计项目之基于Python实现围棋游戏代码
游戏进去默认为九路玩法,当然也可以选择十三路或是十九路玩法 使用pycharam打开项目,pip安装模块并引用,然后运行即可, 代码每行都有详细的注释,可以做课程设计或者毕业设计项目参考
86 33
|
3月前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
233 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
3月前
|
JavaScript API C#
【Azure Developer】Python代码调用Graph API将外部用户添加到组,结果无效,也无错误信息
根据Graph API文档,在单个请求中将多个成员添加到组时,Python代码示例中的`members@odata.bind`被错误写为`members@odata_bind`,导致用户未成功添加。
59 10
|
3月前
|
数据可视化 Python
以下是一些常用的图表类型及其Python代码示例,使用Matplotlib和Seaborn库。
通过这些思维导图和分析说明表,您可以更直观地理解和选择适合的数据可视化图表类型,帮助更有效地展示和分析数据。
120 8

热门文章

最新文章