Android OpenGL添加光照和材料属性

简介: Android OpenGL添加光照和材料属性

Android OpenGL添加光照和材料属性


转载请注明出处:【huachao1001的专栏:http://blog.csdn.net/huachao1001


在上一篇文章【 Android OpenGL显示任意3D模型文件 】中,我们学习了如何读取并显示STL格式的3D文件,但是,最后,看到的并没有添加光照效果,导致虽然模型在旋转,但是我们看到的画面却像一个平面。今天我们开始学习如何给模型添加灯照效果,以及如何为模型添加材料属性,使得最终看到的旋转模型真正为3D效果。首先,看看最终效果,如下图所示:

微信图片_20221214180146.gif微信图片_20221214180743.gif

1 光照效果

因为我们所做的立体效果是根据真实世界原理来计算的,所以很有必要去了解在现实世界中,我们所看到的一个物体有哪些光。

1.1 真实世界中的光照

我们知道,在黑暗中,当我们将手电筒对准某个物体时,我们所看到的该物体的“亮度”有3种:

物体表面发生镜面反射部分(Specular),一般是白色。

物体表面发生漫反射部分(Diffuse),一般是物体表面的颜色。

物体表面没有照射到光的部分,即通过环境光(Ambient)照射,在黑暗中环境光是黑色。

如下图所示(图片出自www.guidebee.info):

微信图片_20221214180748.png

从上图中也可以看出,光源的位置也会影响到我们所看到的最终画面。显然,我们只需控制好光源位置、镜面反射颜色、漫反射颜色、环境光颜色这四个参数,就可以做到了。

1.2 Android OpenGL相关API

1.2.1 光源 GL10.GL_LIGHT0

0号光源,该光源的默认颜色为白色,即RGBA为(1.0,1.0,1.0,1.0),漫反射和镜面反射也为白色。类似的,还有其他光源如GL10.GL_LIGHT1,系统提供了0~7共8种光源,其他的光源默认为黑色,即RGBA为(0.0,0.0,0.0,1.0).

开启光源也非常简单:

//启用光照功能
gl.glEnable(GL10.GL_LIGHTING);
//开启0号灯
gl.glEnable(GL10.GL_LIGHT0);

1.2.2 设置各种反射光颜色

一旦开启了光照功能,就可以通过glLightfv函数来指定各种反射光的颜色了,glLightfv函数如下:

public void glLightfv(int light,int pname, FloatBuffer params)
public void glLightfv(int light,int pname,float[] params,int offset)
public void glLightf(int light,int pname,float param)

其中,

light: 指光源的序号,OpenGL ES可以设置从0到7共八个光源。

pname: 光源参数名称,可以有如下:

GL_SPOT_EXPONENT

GL_SPOT_CUTOFF

GL_CONSTANT_ATTENUATION

GL_LINEAR_ATTENUATION

GL_QUADRATIC_ATTENUATION

GL_AMBIENT(用于设置环境光颜色)

GL_DIFFUSE(用于设置漫反射光颜色)

GL_SPECULAR(用于设置镜面反射光颜色)

GL_SPOT_DIRECTION

GL_POSITION(用于设置光源位置)

params: 参数的值(数组或是Buffer类型),数组里面含有4个值分别表示R,G,B,A。

指定光源的位置的参数为GL_POSITION,位置的值为(x,y,z,w),如果是平行光则将w 设为0,此时,(x,y,z)为平行光的方向:

1.3 代码实现

在上一篇的基础上,直接修改GLRenderer.java文件,添加一个openLight函数:

public void openLight(GL10 gl) {
    gl.glEnable(GL10.GL_LIGHTING);
    gl.glEnable(GL10.GL_LIGHT0);
    gl.glLightfv(GL10.GL_LIGHT0, GL10.GL_AMBIENT, Util.floatToBuffer(ambient));
    gl.glLightfv(GL10.GL_LIGHT0, GL10.GL_DIFFUSE, Util.floatToBuffer(diffuse));
    gl.glLightfv(GL10.GL_LIGHT0, GL10.GL_SPECULAR, Util.floatToBuffer(specular));
    gl.glLightfv(GL10.GL_LIGHT0, GL10.GL_POSITION, Util.floatToBuffer(lightPosition));
}

另外,分别添加我们设定的各种反射光的颜色:

float[] ambient = {0.9f, 0.9f, 0.9f, 1.0f,};
float[] diffuse = {0.5f, 0.5f, 0.5f, 1.0f,};
float[] specular = {1.0f, 1.0f, 1.0f, 1.0f,};
float[] lightPosition = {0.5f, 0.5f, 0.5f, 0.0f,};

最后,在onSurfaceCreated函数里面调用一下openLight(gl);函数即可。最终效果如下:

微信图片_20221214180755.gif


2 材料属性

前面我们提到了可以为模型设置不同的材料属性,本节中,我们一起学习如何为模型设定不同的材料属性。我们知道,同样是一束光,照在不同颜色材料的物体上面,我们所看到的是不同的,反射出来的不仅仅颜色不同,光泽也是不同的。换句话说,不同的材质对最终的渲染效果影响很大!

材料的属性设置和光源的设置有些类似,用到的函数

public void glMaterialf(int face,int pname,float param)
public void glMaterialfv(int face,int pname,float[] params,int offset)
public void glMaterialfv(int face,int pname,FloatBuffer params)

其中,

face : 在OpenGL ES中只能使用GL_FRONT_AND_BACK,表示修改物体的前面和后面的材质光线属性。

pname: 参数类型,这些参数用在光照方程。可以取如下值:

GL_AMBIENT

GL_DIFFUSE

GL_SPECULAR

GL_EMISSION

GL_SHININESS。

param:指定反射的颜色。

跟设置光照类似,设置材料属性首先需要定义各种反射光的颜色:

float[] materialAmb = {0.4f, 0.4f, 1.0f, 1.0f};
float[] materialDiff = {0.0f, 0.0f, 1.0f, 1.0f};//漫反射设置蓝色
float[] materialSpec = {1.0f, 0.5f, 0.0f, 1.0f};

然后就是将这些颜色通过glMaterialfv函数设置进去:

public void enableMaterial(GL10 gl) {
    //材料对环境光的反射情况
    gl.glMaterialfv(GL10.GL_FRONT_AND_BACK, GL10.GL_AMBIENT, Util.floatToBuffer(materialAmb));
    //散射光的反射情况
    gl.glMaterialfv(GL10.GL_FRONT_AND_BACK, GL10.GL_DIFFUSE, Util.floatToBuffer(materialDiff));
    //镜面光的反射情况
    gl.glMaterialfv(GL10.GL_FRONT_AND_BACK, GL10.GL_SPECULAR, Util.floatToBuffer(materialSpec));
}

当然了,最后也别忘记了在onSurfaceCreated函数中调用 enableMaterial(gl);,最后看看效果:

微信图片_20221214180801.gif


3 完整的GLRenderer类

最后项目代码就不上传了,直接参考上一篇的文章中的源码即可,本位值修改了GLRenderer类,把该类的完整源码贴上:

package com.hc.opengl;
import android.content.Context;
import android.opengl.GLSurfaceView;
import android.opengl.GLU;
import java.io.IOException;
import javax.microedition.khronos.egl.EGLConfig;
import javax.microedition.khronos.opengles.GL10;
/**
 * Package com.hc.opengl
 * Created by HuaChao on 2016/8/9.
 */
public class GLRenderer implements GLSurfaceView.Renderer {
    private Model model;
    private Point mCenterPoint;
    private Point eye = new Point(0, 0, -3);
    private Point up = new Point(0, 1, 0);
    private Point center = new Point(0, 0, 0);
    private float mScalef = 1;
    private float mDegree = 0;
    public GLRenderer(Context context) {
        try {
            model = new STLReader().parserBinStlInAssets(context, "huba.stl");
        } catch (IOException e) {
            e.printStackTrace();
        }
    }
    public void rotate(float degree) {
        mDegree = degree;
    }
    @Override
    public void onDrawFrame(GL10 gl) {
        // 清除屏幕和深度缓存
        gl.glClear(GL10.GL_COLOR_BUFFER_BIT | GL10.GL_DEPTH_BUFFER_BIT);
        gl.glLoadIdentity();// 重置当前的模型观察矩阵
        //眼睛对着原点看
        GLU.gluLookAt(gl, eye.x, eye.y, eye.z, center.x,
                center.y, center.z, up.x, up.y, up.z);
        //为了能有立体感觉,通过改变mDegree值,让模型不断旋转
        gl.glRotatef(mDegree, 0, 1, 0);
        //将模型放缩到View刚好装下
        gl.glScalef(mScalef, mScalef, mScalef);
        //把模型移动到原点
        gl.glTranslatef(-mCenterPoint.x, -mCenterPoint.y,
                -mCenterPoint.z);
        //===================begin==============================//
        //允许给每个顶点设置法向量
        gl.glEnableClientState(GL10.GL_NORMAL_ARRAY);
        // 允许设置顶点
        gl.glEnableClientState(GL10.GL_VERTEX_ARRAY);
        // 允许设置颜色
        //设置法向量数据源
        gl.glNormalPointer(GL10.GL_FLOAT, 0, model.getVnormBuffer());
        // 设置三角形顶点数据源
        gl.glVertexPointer(3, GL10.GL_FLOAT, 0, model.getVertBuffer());
        // 绘制三角形
        gl.glDrawArrays(GL10.GL_TRIANGLES, 0, model.getFacetCount() * 3);
        // 取消顶点设置
        gl.glDisableClientState(GL10.GL_VERTEX_ARRAY);
        //取消法向量设置
        gl.glDisableClientState(GL10.GL_NORMAL_ARRAY);
        //=====================end============================//
    }
    @Override
    public void onSurfaceChanged(GL10 gl, int width, int height) {
        // 设置OpenGL场景的大小,(0,0)表示窗口内部视口的左下角,(width, height)指定了视口的大小
        gl.glViewport(0, 0, width, height);
        gl.glMatrixMode(GL10.GL_PROJECTION); // 设置投影矩阵
        gl.glLoadIdentity(); // 设置矩阵为单位矩阵,相当于重置矩阵
        GLU.gluPerspective(gl, 45.0f, ((float) width) / height, 1f, 100f);// 设置透视范围
        //以下两句声明,以后所有的变换都是针对模型(即我们绘制的图形)
        gl.glMatrixMode(GL10.GL_MODELVIEW);
        gl.glLoadIdentity();
    }
    @Override
    public void onSurfaceCreated(GL10 gl, EGLConfig config) {
        gl.glEnable(GL10.GL_DEPTH_TEST); // 启用深度缓存
        gl.glClearColor(0f, 0f, 0f, 0f);// 设置深度缓存值
        gl.glDepthFunc(GL10.GL_LEQUAL); // 设置深度缓存比较函数
        gl.glShadeModel(GL10.GL_SMOOTH);// 设置阴影模式GL_SMOOTH
        //开启光
        openLight(gl);
        enableMaterial(gl);
        float r = model.getR();
        //r是半径,不是直径,因此用0.5/r可以算出放缩比例
        mScalef = 0.5f / r;
        mCenterPoint = model.getCentrePoint();
    }
    float[] ambient = {0.9f, 0.9f, 0.9f, 1.0f};
    float[] diffuse = {0.5f, 0.5f, 0.5f, 1.0f};
    float[] specular = {1.0f, 1.0f, 1.0f, 1.0f};
    float[] lightPosition = {0.5f, 0.5f, 0.5f, 0.0f};
    public void openLight(GL10 gl) {
        gl.glEnable(GL10.GL_LIGHTING);
        gl.glEnable(GL10.GL_LIGHT0);
        gl.glLightfv(GL10.GL_LIGHT0, GL10.GL_AMBIENT, Util.floatToBuffer(ambient));
        gl.glLightfv(GL10.GL_LIGHT0, GL10.GL_DIFFUSE, Util.floatToBuffer(diffuse));
        gl.glLightfv(GL10.GL_LIGHT0, GL10.GL_SPECULAR, Util.floatToBuffer(specular));
        gl.glLightfv(GL10.GL_LIGHT0, GL10.GL_POSITION, Util.floatToBuffer(lightPosition));
    }
    float[] materialAmb = {0.4f, 0.4f, 1.0f, 1.0f,};
    float[] materialDiff = {0.0f, 0.0f, 1.0f, 1.0f,};
    float[] materialSpec = {1.0f, 0.5f, 0.0f, 1.0f,};
    public void enableMaterial(GL10 gl) {
        //材料对环境光的反射情况
        gl.glMaterialfv(GL10.GL_FRONT_AND_BACK, GL10.GL_AMBIENT, Util.floatToBuffer(materialAmb));
        //散射光的反射情况
        gl.glMaterialfv(GL10.GL_FRONT_AND_BACK, GL10.GL_DIFFUSE, Util.floatToBuffer(materialDiff));
        //镜面光的反射情况
        gl.glMaterialfv(GL10.GL_FRONT_AND_BACK, GL10.GL_SPECULAR, Util.floatToBuffer(materialSpec));
    }
}

最后感谢大家的关注,欢迎关注huachao1001的博客,http://blog.csdn.net/huachao10019

相关文章
|
6月前
|
Shell API Android开发
android queries属性
android queries属性
499 2
|
3月前
|
Android开发
AutoX——当Android中clickable属性显示为false,实际可点击的布局如何处理
AutoX——当Android中clickable属性显示为false,实际可点击的布局如何处理
57 0
|
6月前
|
Java Android开发 C++
Android源代码定制:MK文件执行顺序|属性覆盖
Android源代码定制:MK文件执行顺序|属性覆盖
333 2
Android源代码定制:MK文件执行顺序|属性覆盖
|
6月前
|
缓存 安全 Java
Android中的persistent属性
Android中的persistent属性
288 2
|
6月前
|
Android开发
通过反射方式获取Android设备系统属性
通过反射方式获取Android设备系统属性 【5月更文挑战第1天】
113 2
|
6月前
|
Android开发 C++
Android 系统属性(SystemProperties)
Android 系统属性(SystemProperties)
221 1
|
6月前
|
Java Android开发
Android开发之使用OpenGL实现翻书动画
本文讲述了如何使用OpenGL实现更平滑、逼真的电子书翻页动画,以解决传统贝塞尔曲线方法存在的卡顿和阴影问题。作者分享了一个改造后的外国代码示例,提供了从前往后和从后往前的翻页效果动图。文章附带了`GlTurnActivity`的Java代码片段,展示如何加载和显示书籍图片。完整工程代码可在作者的GitHub找到:https://github.com/aqi00/note/tree/master/ExmOpenGL。
151 1
Android开发之使用OpenGL实现翻书动画
|
6月前
|
Android开发 开发者
Android开发之OpenGL的画笔工具GL10
这篇文章简述了OpenGL通过GL10进行三维图形绘制,强调颜色取值范围为0.0到1.0,背景和画笔颜色设置方法;介绍了三维坐标系及与之相关的旋转、平移和缩放操作;最后探讨了坐标矩阵变换,包括设置绘图区域、调整镜头参数和改变观测方位。示例代码展示了如何使用这些方法创建简单的三维立方体。
75 1
Android开发之OpenGL的画笔工具GL10
|
6月前
|
前端开发 API vr&ar
Android开发之OpenGL绘制三维图形的流程
即将连载的系列文章将探索Android上的OpenGL开发,这是一种用于创建3D图形和动画的技术。OpenGL是跨平台的图形库,Android已集成其API。文章以2D绘图为例,解释了OpenGL的3个核心元素:GLSurfaceView(对应View)、GLSurfaceView.Renderer(类似Canvas)和GL10(类似Paint)。通过将这些结合,Android能实现3D图形渲染。文章介绍了Renderer接口的三个方法,分别对应2D绘图的构造、测量布局和绘制过程。示例代码展示了如何在布局中添加GLSurfaceView并注册渲染器。
198 1
Android开发之OpenGL绘制三维图形的流程
|
6月前
|
测试技术 Android开发 开发者
RK3568 Android系统客制化动态替换ro任意属性
RK3568 Android系统客制化动态替换ro任意属性
258 1