《蘑菇街广告的排序:从历史数据学习到个性化强化学习》电子版地址

简介: 蘑菇街广告的排序:从历史数据学习到个性化强化学习

《蘑菇街广告的排序:从历史数据学习到个性化强化学习》蘑菇街广告的排序:从历史数据学习到个性化强化学习

电子书:

屏幕快照 2022-06-17 上午9.58.35.png

                
            </div>
目录
相关文章
|
3月前
|
测试技术
LLM数学性能暴涨168%,微软14人团队力作!合成数据2.0秘诀曝光,智能体生成教学
【9月更文挑战第14天】微软研究团队发布了一篇介绍新型框架&quot;AgentInstruct&quot;的论文,该框架旨在通过自动生成高质量合成数据,推动语言模型发展。AgentInstruct仅需原始数据源即可创建多样化的合成数据,减少人工工作量。研究团队基于此框架构建了含2500万训练对的数据集,展示了其在多种技能教学中的潜力。经微调后的Mistral-7b模型演进为Orca-3,在多个基准测试中显著超越同类模型。尽管如此,AgentInstruct仍面临创建流程耗时及合成数据复杂性不足等问题。论文详情见:https://arxiv.org/pdf/2407.03502
85 2
|
6月前
|
分布式计算 数据可视化 Python
豆瓣短评大数据分析:探索用户观影趋势与情感倾向
豆瓣短评大数据分析:探索用户观影趋势与情感倾向
121 1
|
机器学习/深度学习 存储 开发框架
推荐系统[八]算法实践总结V1:淘宝逛逛and阿里飞猪个性化推荐:召回算法实践总结【冷启动召回、复购召回、用户行为召回等算法实战】
推荐系统[八]算法实践总结V1:淘宝逛逛and阿里飞猪个性化推荐:召回算法实践总结【冷启动召回、复购召回、用户行为召回等算法实战】
推荐系统[八]算法实践总结V1:淘宝逛逛and阿里飞猪个性化推荐:召回算法实践总结【冷启动召回、复购召回、用户行为召回等算法实战】
|
机器学习/深度学习
|
机器学习/深度学习 搜索推荐 算法
推荐系统[八]算法实践总结V0:腾讯音乐全民K歌推荐系统架构及粗排设计
推荐系统[八]算法实践总结V0:腾讯音乐全民K歌推荐系统架构及粗排设计
推荐系统[八]算法实践总结V0:腾讯音乐全民K歌推荐系统架构及粗排设计
|
机器学习/深度学习 搜索推荐
《蘑菇街广告的排序:从历史数据学习到个性化强化学习》电子版地址
蘑菇街广告的排序:从历史数据学习到个性化强化学习
80 0
《蘑菇街广告的排序:从历史数据学习到个性化强化学习》电子版地址
|
机器学习/深度学习 算法
量化交易分析:4000多只股票2015-2022年历史数据分享,供小伙伴们学习交流
量化交易分析:4000多只股票2015-2022年历史数据分享,供小伙伴们学习交流
量化交易分析:4000多只股票2015-2022年历史数据分享,供小伙伴们学习交流
|
机器学习/深度学习 人工智能 算法
大厂技术实现 | 爱奇艺短视频推荐业务中的多目标优化实践 @推荐与计算广告系列
短视频是当前互联网最热门的业务之一,聚集了巨大的互联网用户流量,也是各大公司争相发展的业务领域。作为主要营收业务方向,短视频方向的推荐算法也日新月异并驱动业务增长,本期我们看到的是爱奇艺的短视频频道下,推荐多任务算法应用实践路径与落地方案。
4824 9
大厂技术实现 | 爱奇艺短视频推荐业务中的多目标优化实践 @推荐与计算广告系列
|
机器学习/深度学习 搜索推荐 算法
【推荐系统】美团外卖推荐场景的深度位置交互网络DPIN的突破与畅想
美团基础研发机器学习平台训练引擎团队,联合到家搜推技术部算法效能团队、NVIDIA DevTech团队,成立了联合项目组。目前在美团外卖推荐场景中进行了部署,多代模型全面对齐算法的离线效果,对比之前,优化后的CPU任务,性价比提升了2~4倍。
533 0
【推荐系统】美团外卖推荐场景的深度位置交互网络DPIN的突破与畅想