《MongoDB处理大量级用户行为数据-企业数字营销平台应用》电子版地址

简介: MongoDB处理大量级用户行为数据-企业数字营销平台应用

《MongoDB处理大量级用户行为数据-企业数字营销平台应用》MongoDB处理大量级用户行为数据-企业数字营销平台应用

电子书:

屏幕快照 2022-06-17 上午9.58.35.png

                
            </div>
目录
相关文章
|
5月前
|
人工智能 自然语言处理 搜索推荐
AI营销新宠助力企业突围
AI浪潮下,企业如何借力新技术突围?OpenAI与立讯合作预示消费级AI设备爆发,AIGEO市场规模2024年将超180亿元。AI语义预检内容提升曝光效率,精准触达用户。63%网民用AI获取信息,AI搜索流量占比达42%。政策支持叠加技术进步,内容营销迎来智能变革。企业需重构策略,把握AI红利。欢迎交流咨询,共探增长新路径。
|
搜索推荐 关系型数据库 分布式数据库
PolarDB 开源基础教程系列 7.3 应用实践之 精准营销场景
本文介绍了基于用户画像的精准营销技术,重点探讨了如何通过标签组合快速圈选目标人群。实验分为三部分: 1. **传统方法**:使用字符串存储标签并进行模糊查询,但性能较差,每次请求都需要扫描全表。 2. **实验1**:引入`pg_trgm`插件和GIN索引,显著提升了单个模糊查询条件的性能。 3. **实验2**:改用数组类型存储标签,并结合GIN索引加速包含查询,性能进一步提升。 4. **实验3**:利用`smlar`插件实现近似度过滤,支持按标签重合数量或比例筛选。
233 3
|
10月前
|
搜索推荐 数据挖掘 数据安全/隐私保护
频率派与贝叶斯统计在营销组合建模中的应用比较:隐私优先时代的方法选择
营销组合建模(MMM)是量化营销渠道贡献的核心工具,在数字营销进入隐私优先时代后焕发新生。文章探讨了频率派与贝叶斯统计学在MMM中的应用,前者实现简单、结果直观,适合数据充足场景;后者能整合先验知识、量化不确定性,适应复杂和数据稀缺情况。两者各有优劣,选择需结合业务需求与数据条件。贝叶斯方法在隐私保护趋势下尤为重要,为未来营销分析提供新思路。
287 47
频率派与贝叶斯统计在营销组合建模中的应用比较:隐私优先时代的方法选择
|
人工智能 监控 NoSQL
超过1000万企业选择的凭安征信,为什么选择阿里云MongoDB
凭安征信选择使用阿里云的MongoDB服务,既是出于对MongoDB和阿里云5年深度合作经验的信任,也出于对降本增效的进一步诉求。
4049 3
|
11月前
|
存储 人工智能 数据处理
StarRocks x Demandbase ,助力北美 ABM 营销平台降本 90%!
Demandbase 是一家成立于 2007 年的北美营销平台,专注于 AI 驱动的 ABM 解决方案。为解决 ClickHouse 在性能与灵活性上的瓶颈,Demandbase 引入 StarRocks 和 Apache Iceberg,构建新数据基础设施。此举使硬件资源减少 60%,存储成本降低 90%,ETL 管道简化,显著提升数据处理效率和运营效率。未来,Demandbase 将进一步优化实时数据分析能力,探索更高效的数据架构。
|
人工智能 自然语言处理 数据挖掘
光速矩阵:专属AIGC营销人才工场,企业高效灵活的人才共享平台
在数字化和人工智能加速变革的时代,光速矩阵是一个创新的AIGC(人工智能生成内容)人才共享平台,为企业提供从创意策划到内容分发的全流程支持。平台汇聚了各类AIGC人才,通过智能匹配系统和灵活用工模式,帮助企业高效、低成本地获取优质内容创作服务,实现品牌营销的卓越增长。
|
12月前
|
人工智能 搜索推荐 Cloud Native
2025年企业营销的制胜指南:AI、Alpha世代与全渠道实战策略
2025年企业营销的制胜指南:AI、Alpha世代与全渠道实战策略
|
存储 NoSQL Cloud Native
MongoDB云原生化:为企业开发注入高效动力
MongoDB云原生化为企业开发注入高效动力,分为三部分:1. 介绍阿里云和MongoDB的服务;2. 阿里云MongoDB解决自建模型痛点的功能,包括隔离性、海量数据处理、弹性能力及运维操作优化;3. 客户案例展示。通过云原生架构,MongoDB实现了灵活的扩展、高效的备份恢复和快速的回档能力,显著提升了企业的业务迭代速度和数据管理效率。典型客户如吉比特、莉莉丝、掌阅等受益于这些功能,实现了更稳定和高效的数据库服务。
|
存储 NoSQL 关系型数据库
阿里云数据库MongoDB版助力信也科技 打造互联网金融企业样板
我们的风控系统引入阿里云数据库MongoDB版后,解决了特征类字段灵活加减的问题,大大提高了开发效率,极大的提升了业务用户体验,获得了非常好的效果
阿里云数据库MongoDB版助力信也科技 打造互联网金融企业样板
|
机器学习/深度学习 数据采集 数据挖掘
特征工程在营销组合建模中的应用:基于因果推断的机器学习方法优化渠道效应估计
因果推断方法为特征工程提供了一个更深层次的框架,使我们能够区分真正的因果关系和简单的统计相关性。这种方法在需要理解干预效果的领域尤为重要,如经济学、医学和市场营销。
606 1
特征工程在营销组合建模中的应用:基于因果推断的机器学习方法优化渠道效应估计

推荐镜像

更多