【DBN回归预测】基于麻雀算法优化深度置信网络SSA-DBN实现数据回归多输出预测附matlab代码

简介: 【DBN回归预测】基于麻雀算法优化深度置信网络SSA-DBN实现数据回归多输出预测附matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法  神经网络预测雷达通信 无线传感器

信号处理图像处理路径规划元胞自动机无人机 电力系统

⛄ 内容介绍

为了提高短期光伏发电预测的准确性,文中采用深度置信网络(DBN)建立了各模型函数的预测模型.通过分析各模型函数的特征,建立了光伏发电模型的功率预测.传统的基于神经网络的功率预测难以训练多层网络,影响其预测精度.DBN采用无监督贪婪逐层训练算法构建了一个在回归预测分析中具有优异性能的多隐层网络结构,已成为深度学习领域的研究热点.DBN参数采用麻雀优化算法(SSA)优化,避免出现由随机初始化导致的局部最优解现象,从而提高了DBN网络预测性能.最后,案例测试显示了所提出模型的有效性.

⛄ 部分代码

% GetOnInd: get indexes which are used (not dropped) nodes%GetOnInd获取使用(未删除)节点的标准。

%

% OnInd = GetOnInd( dbn, DropOutRate, strbm )%OnInd的调用格式

%

%

%Output parameters:%输出参数

% OnInd: indexes which are used (not dropped) nodes%OnInd:使用(未删除)节点的标准。

%

%

%Input parameters:%输入参数

% dbn: the Original Deep Belief Nets (DBN) model%最初的深度信念网络(DBN)模型。

% DropOutRate: 0 < DropOutRate < 1%DropOutRate的取值范围为0到1

% strbm (optional): started rbm layer to dropout (Default: 1)%strbm(optional):起始rbm层的辍学(默认值:1)

%

%

%Reference:%参考

%for details of the dropout%关于辍学的细节

% Hinton et al, Improving neural networks by preventing co-adaptation of feature detectors, 2012.%Hinton等人,通过阻止功能探测器的协同适应,改善神经网络,2012年。

%

%

%Version: 20130821%版本:20130821


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Deep Neural Network:%深度神经网络                         %

%                                                          %

% Copyright (C) 2013 Masayuki Tanaka. All rights reserved. %

%                    mtanaka@ctrl.titech.ac.jp             %

%      %版权(C) 2013年Masayuki Tanaka。保留所有权利。        %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function OnInd = GetOnInd( dbn, DropOutRate, strbm )%建立OnInd功能函数


if( ~exist('strbm', 'var') || isempty(strbm) )%如果不存在类型strbm,变量var或者类型strbm为空

strbm = 1;%strbm为1

end


OnInd = cell(numel(dbn.rbm),1);%OnInd为行为dbn.rbm中元素的个数,列为1列的空的单元数组


for n=1:numel(dbn.rbm)%n的取值范围是1到dbn.rbm中元素的个数

   dimV = size(dbn.rbm{n}.W,1);%dimV为dbn.rbm{n}行元素的大小

   if( n >= strbm )%如果n大等于strbm

       OnNum = round(dimV*DropOutRate(n));%OnNum为随机的dimV*DropOutRate维矩阵

       OnInd{n} = sort(randperm(dimV, OnNum));%sort函数功能把数组元素按升序或降序排列 如果A是矩阵,sort(A) 对A按每一列元素按照升序排列。P=randperm(N)返回一个包含N个在0到N之间产生的随机元素的向量P=randperm(N,K)返回一个包含K个在0到N之间的随机元素向量例如:randperm(6,3)可能为[4 2 5]


   else

       OnInd{n} = 1:dimV;%OnInd{n}的范围是1到dimV

   end

end

⛄ 运行结果

⛄ 参考文献

[1]常东峰, 南新元. 基于改进麻雀算法的深度信念网络短期光伏功率预测[J]. 现代电子技术, 2022(017):045.

⛄ Matlab代码关注

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料


相关文章
|
7天前
|
存储 编解码 算法
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
|
4天前
|
机器学习/深度学习 人工智能 搜索推荐
从零构建短视频推荐系统:双塔算法架构解析与代码实现
短视频推荐看似“读心”,实则依赖双塔推荐系统:用户塔与物品塔分别将行为与内容编码为向量,通过相似度匹配实现精准推送。本文解析其架构原理、技术实现与工程挑战,揭秘抖音等平台如何用AI抓住你的注意力。
110 6
从零构建短视频推荐系统:双塔算法架构解析与代码实现
|
7天前
|
机器学习/深度学习 传感器 算法
【高创新】基于优化的自适应差分导纳算法的改进最大功率点跟踪研究(Matlab代码实现)
【高创新】基于优化的自适应差分导纳算法的改进最大功率点跟踪研究(Matlab代码实现)
86 14
|
7天前
|
存储 算法 安全
【多目标工程应用】基于MOGWO的地铁隧道上方基坑工程优化设计研究(Matlab代码实现)
【多目标工程应用】基于MOGWO的地铁隧道上方基坑工程优化设计研究(Matlab代码实现)
|
10月前
|
SQL 安全 网络安全
网络安全与信息安全:知识分享####
【10月更文挑战第21天】 随着数字化时代的快速发展,网络安全和信息安全已成为个人和企业不可忽视的关键问题。本文将探讨网络安全漏洞、加密技术以及安全意识的重要性,并提供一些实用的建议,帮助读者提高自身的网络安全防护能力。 ####
226 17
|
10月前
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将从网络安全漏洞、加密技术和安全意识三个方面进行探讨,旨在提高读者对网络安全的认识和防范能力。通过分析常见的网络安全漏洞,介绍加密技术的基本原理和应用,以及强调安全意识的重要性,帮助读者更好地保护自己的网络信息安全。
178 10
|
10月前
|
存储 SQL 安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将介绍网络安全的重要性,分析常见的网络安全漏洞及其危害,探讨加密技术在保障网络安全中的作用,并强调提高安全意识的必要性。通过本文的学习,读者将了解网络安全的基本概念和应对策略,提升个人和组织的网络安全防护能力。
|
10月前
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
在数字化时代,网络安全和信息安全已成为我们生活中不可或缺的一部分。本文将介绍网络安全漏洞、加密技术和安全意识等方面的内容,并提供一些实用的代码示例。通过阅读本文,您将了解到如何保护自己的网络安全,以及如何提高自己的信息安全意识。
186 10
|
10月前
|
监控 安全 网络安全
网络安全与信息安全:漏洞、加密与意识的交织
在数字时代的浪潮中,网络安全与信息安全成为维护数据完整性、保密性和可用性的关键。本文深入探讨了网络安全中的漏洞概念、加密技术的应用以及提升安全意识的重要性。通过实际案例分析,揭示了网络攻击的常见模式和防御策略,强调了教育和技术并重的安全理念。旨在为读者提供一套全面的网络安全知识框架,从而在日益复杂的网络环境中保护个人和组织的资产安全。
|
10月前
|
存储 监控 安全
云计算与网络安全:云服务、网络安全、信息安全等技术领域的融合与挑战
本文将探讨云计算与网络安全之间的关系,以及它们在云服务、网络安全和信息安全等技术领域中的融合与挑战。我们将分析云计算的优势和风险,以及如何通过网络安全措施来保护数据和应用程序。我们还将讨论如何确保云服务的可用性和可靠性,以及如何处理网络攻击和数据泄露等问题。最后,我们将提供一些关于如何在云计算环境中实现网络安全的建议和最佳实践。

热门文章

最新文章