机器学习模型的超参数优化(一)

本文涉及的产品
模型训练 PAI-DLC,5000CU*H 3个月
交互式建模 PAI-DSW,5000CU*H 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
简介: 机器学习模型的超参数优化(一)

引言

模型优化是机器学习算法实现中最困难的挑战之一。机器学习和深度学习理论的所有分支都致力于模型的优化。

image.png

机器学习中的超参数优化旨在寻找使得机器学习算法在验证数据集上表现性能最佳的超参数。超参数与一般模型参数不同,超参数是在训练前提前设置的。举例来说,随机森林算法中树的数量就是一个超参数,而神经网络中的权值则不是超参数。

其它超参数有:

  • 神经网络训练中的学习率
  • 支持向量机中的 参数和 参数
  • k 近邻算法中的 参数  ……

超参数优化找到一组超参数,这些超参数返回一个优化模型,该模型减少了预定义的损失函数,进而提高了给定独立数据的预测或者分类精度。

image.png

分类算法中的超参数

超参数优化方法

超参数的设置对于模型性能有着直接影响,其重要性不言而喻。为了最大化模型性能,了解如何优化超参数至关重要。接下来介绍了几种常用的超参数优化方法。

1.手动调参

很多情况下,工程师们依靠试错法手动对超参数进行调参优化,有经验的工程师能够很大程度上判断超参数如何进行设置能够获得更高的模型准确性。但是,这一方法依赖大量的经验,并且比较耗时,因此发展出了许多自动化超参数优化方法。

2. 网格化寻优(Grid Search)

网格化寻优可以说是最基本的超参数优化方法。使用这种技术,我们只需为所有超参数的可能构建独立的模型,评估每个模型的性能,并选择产生最佳结果的模型和超参数。

image.png

网格化寻优方法

以一个典型的核函数为 RBF 的 SVM 分类模型为例,其至少有两个超参数需要优化——正则化常数 和 核函数参数 。这两个超参数都是连续的,需要执行网格化寻优为每个超参数选择合理取值。假设 。那么网格化寻优方法将对每一对( ,)赋值后的 SVM 模型进行训练,并在验证集上分别评估它们的性能(或者在训练集内进行 cross-validation)。最终,网格化寻优方法返回在评估过程中得分最高的模型及其超参数。

通过以下代码,可以实现上述方法:

首先,通过 sklearn 库调用 GridSearchCV 。

from sklearn.datasets import load_iris
from sklearn.svm import SVC
iris = load_iris()
svc = SVR()
from sklearn.model_selection import GridSearchCV
from sklearn.svm import SVR
grid = GridSearchCV(
       estimator=SVR(kernel='rbf'),
       param_grid={
           'C': [0.1, 1, 100, 1000],
           'epsilon': [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, 10],
           'gamma': [0.0001, 0.001, 0.005, 0.1, 1, 3, 5]
      },
       cv=5, scoring='neg_mean_squared_error', verbose=0, n_jobs=-1)
然后拟合网格。
grid.fit(X,y)
输出结果。
#print the best score throughout the grid search
print grid.best_score_
#print the best parameter used for the highest score of the model.
print grid.best_param_

网格化寻优的一个缺点是,当涉及到多个超参数时,计算数量呈指数增长。并且这一方法并不能保证搜索会找到完美的超参数值。

目录
相关文章
|
9天前
|
机器学习/深度学习 算法 数据可视化
机器学习模型中特征贡献度分析:预测贡献与错误贡献
本文将探讨特征重要性与特征有效性之间的关系,并引入两个关键概念:预测贡献度和错误贡献度。
38 3
|
7天前
|
机器学习/深度学习 安全 网络安全
利用机器学习优化网络安全威胁检测
【9月更文挑战第20天】在数字时代,网络安全成为企业和个人面临的重大挑战。传统的安全措施往往无法有效应对日益复杂的网络攻击手段。本文将探讨如何通过机器学习技术来提升威胁检测的效率和准确性,旨在为读者提供一种创新的视角,以理解和实施机器学习在网络安全中的应用,从而更好地保护数据和系统免受侵害。
|
4天前
|
机器学习/深度学习 数据可视化 JavaScript
探索机器学习模型的可视化技术
【9月更文挑战第23天】在数据科学中,理解和解释机器学习模型的决策过程是至关重要的。本文将介绍几种流行的可视化工具和库,如TensorBoard、D3.js等,帮助读者更好地理解模型内部工作原理及其预测结果。通过实例演示如何使用这些工具进行模型可视化,增强模型的可解释性。
|
18天前
|
机器学习/深度学习 Python
验证集的划分方法:确保机器学习模型泛化能力的关键
本文详细介绍了机器学习中验证集的作用及其划分方法。验证集主要用于评估模型性能和调整超参数,不同于仅用于最终评估的测试集。文中描述了几种常见的划分方法,包括简单划分、交叉验证、时间序列数据划分及分层抽样划分,并提供了Python示例代码。此外,还强调了在划分数据集时应注意随机性、数据分布和多次实验的重要性。合理划分验证集有助于更准确地评估模型性能并进行有效调优。
|
18天前
|
机器学习/深度学习 人工智能 自然语言处理
机器学习模型之深度神经网络的特点
深度神经网络(Deep Neural Networks, DNNs)是一类机器学习模型,通过多个层级(层)的神经元来模拟人脑的工作方式,从而实现复杂的数据处理和模式识别任务。
25 1
|
1天前
|
机器学习/深度学习 人工智能 分布式计算
使用PAI+LLaMA Factory 微调 Qwen2-VL 模型,搭建文旅领域知识问答机器人
本次教程介绍了如何使用 PAI 和 LLaMA Factory 框架,基于全参方法微调 Qwen2-VL模型,使其能够进行文旅领域知识问答,同时通过人工测试验证了微调的效果。
|
26天前
|
机器学习/深度学习 算法 前端开发
R语言基础机器学习模型:深入探索决策树与随机森林
【9月更文挑战第2天】决策树和随机森林作为R语言中基础且强大的机器学习模型,各有其独特的优势和适用范围。了解并熟练掌握这两种模型,对于数据科学家和机器学习爱好者来说,无疑是一个重要的里程碑。希望本文能够帮助您更好地理解这两种模型,并在实际项目中灵活应用。
|
25天前
|
机器学习/深度学习 数据采集 存储
一文读懂蒙特卡洛算法:从概率模拟到机器学习模型优化的全方位解析
蒙特卡洛方法起源于1945年科学家斯坦尼斯劳·乌拉姆对纸牌游戏中概率问题的思考,与约翰·冯·诺依曼共同奠定了该方法的理论基础。该方法通过模拟大量随机场景来近似复杂问题的解,因命名灵感源自蒙特卡洛赌场。如今,蒙特卡洛方法广泛应用于机器学习领域,尤其在超参数调优、贝叶斯滤波等方面表现出色。通过随机采样超参数空间,蒙特卡洛方法能够高效地找到优质组合,适用于处理高维度、非线性问题。本文通过实例展示了蒙特卡洛方法在估算圆周率π和优化机器学习模型中的应用,并对比了其与网格搜索方法的性能。
153 1
|
9天前
|
机器学习/深度学习 数据采集 算法
机器学习新纪元:用Scikit-learn驾驭Python,精准模型选择全攻略!
在数据爆炸时代,机器学习成为挖掘数据价值的关键技术,而Scikit-learn作为Python中最受欢迎的机器学习库之一,凭借其丰富的算法集、简洁的API和高效性能,引领着机器学习的新纪元。本文通过一个实际案例——识别垃圾邮件,展示了如何使用Scikit-learn进行精准模型选择。从数据预处理、模型训练到交叉验证和性能比较,最后选择最优模型进行部署,详细介绍了每一步的操作方法。通过这个过程,我们不仅可以看到如何利用Scikit-learn的强大功能,还能了解到模型选择与优化的重要性。希望本文能为你的机器学习之旅提供有价值的参考。
11 0
|
28天前
|
缓存 开发者 测试技术
跨平台应用开发必备秘籍:运用 Uno Platform 打造高性能与优雅设计兼备的多平台应用,全面解析从代码共享到最佳实践的每一个细节
【8月更文挑战第31天】Uno Platform 是一种强大的工具,允许开发者使用 C# 和 XAML 构建跨平台应用。本文探讨了 Uno Platform 中实现跨平台应用的最佳实践,包括代码共享、平台特定功能、性能优化及测试等方面。通过共享代码、采用 MVVM 模式、使用条件编译指令以及优化性能,开发者可以高效构建高质量应用。Uno Platform 支持多种测试方法,确保应用在各平台上的稳定性和可靠性。这使得 Uno Platform 成为个人项目和企业应用的理想选择。
34 0

相关产品

  • 人工智能平台 PAI