我们在有关词干的文章中讨论了文本归一化。但是,词干并不是文本归一化中最重要(甚至使用)的任务。我们还进行了其他一些归一化技术的研究,例如Tokenization,Sentencizing和Lemmatization。但是,还有其他一些用于执行此重要预处理步骤的小方法,将在本文中进行讨论。
请记住,没有适用于所有情况的“正确”归一化方法列表。实际上,随着我们对NLP的深入研究,越来越多的人意识到NLP并不像人们想象的那样具有普遍性。尽管有许多有趣的通用工具箱和预制管道,但更精确的系统是针对上下文量身定制的系统。
因此,不应将本文归一化的步骤列表作为硬性规则,而应将其作为对某些文章进行文本归一化的准则。还必须指出的是,在极少数情况下,您可能不想归一化输入-文本中其中更多变化和错误很重要时(例如,考虑测试校正算法)。
了解我们的目标——为什么我们需要文本归一化
让我们从归一化技术的明确定义开始。自然语言作为一种人力资源,倾向于遵循其创造者随机性的内在本质。这意味着,当我们“产生”自然语言时,我们会在其上加上随机状态。计算机不太擅长处理随机性(尽管使用机器学习算法已将随机性的影响降到最低)。
当我们归一化自然语言时,我们会尝试减少其随机性,使其更接近预定义的“标准”。这有助于减少计算机必须处理的不同信息的数量,从而提高效率。
通过归一化,我们希望使“文本分布”更接近“正态”分布。
当我们归一化自然语言资源时,我们尝试减少其中的随机性
在那篇关于词干的文章中,我提到了归一化试图使事物更接近“正态分布”。在某种意义上说是正确的,当我们归一化自然语言输入时,我们希望以“良好”和“可预测”的形状使事物“符合预期”,例如遵循正态分布。
除了数学领域之外,我们还可以讨论将归一化数据输入到我们的NLP系统中的好处。
首先,通过减少随机性,我们减少了待处理的输入变量,提高了总体性能并避免了误报(想象一下,如果软件日志行中没有错字,就会触发警告。)。对于系统和信息检索任务来说,这是非常正确的(想象一下,如果Google的搜索引擎仅与您键入的单词完全匹配!)。
从某种意义上讲,可以将归一化与“去除尖锐边缘”方法进行比较。
其次,尤其是在讨论机器学习算法时,如果我们使用的是字词袋或TF-IDF字典等简单的旧结构,则归一化会降低输入的维数;或降低载入数据所需的处理量。
第三,归一化有助于在将输入传递给我们的决策NLP算法之前对其进行处理。在这种情况下,我们确保我们的输入将在处理之前遵循“合同”。
最后,如果正确完成,归一化对于从自然语言输入中可靠地提取统计数据非常重要-就像在其他领域(例如时间序列分析)一样,归一化是NLP数据科学家/分析师/工程师手中重要的一步。
我们归一化的对象是什么?
这是一个重要的问题。在进行文本归一化时,我们应该确切地知道我们要标归一什么以及为什么要归一化。另外,输入数据的特点有助于确定我们将要用来归一化输入的步骤。我们最感兴趣的是两件事:
- 句子结构:它总是以标点符号结尾吗?会出现重复的标点符号吗?我们是否应该删除所有标点符号?此外,可以使用更具体的结构(就像主谓宾结构),但很难实现。
- 词汇: 这是需要注意的核心内容之一。大多数时候,我们希望我们的词汇量尽可能小。原因是,在NLP中,词汇是我们的主要特征,而当我们在这些词汇中的变化较少时,我们可以更好地实现目标。
实际上,我们可以通过分解成更简单的问题来对这两个方面进行归一化。以下是最常见的方法:
→删除重复的空格和标点符号。
→去除口音(如果您的数据包含来自“外国”语言的变音符号-这有助于减少与编码类型有关的错误)。
→去除大写字母(通常,使用小写单词可获得更好的结果。但是,在某些情况下,大写字母对于提取信息(例如名称和位置)非常重要)。
→删除或替换特殊字符/表情符号(例如:删除主题标签)。
→替换单词缩写(英语中很常见;例如:“我”→“我是”)。
→将单词数字转换为阿拉伯数字(例如:“二十三”→“ 23”)。
→为特殊符号替换(例如:“ $ 50”→“钱”)。
→缩写标准化(例如:“ US”→“美国” /“美国”,“ btw”→“顺便说一下”)。
→标准化日期格式,社会保险号或其他具有标准格式的数据。
→拼写纠正(可以说一个单词可以用无限方式拼写错误,因此拼写纠正可以通过“更正”来减少词汇变化)–如果您要处理推特,即时消息和电子邮件等开放用户输入的数据,这一点非常重要。
→通过词干去除性别/时间/等级差异。
→将稀有单词替换为更常见的同义词。
→停止定型化(比归一化技术更常见的降维技术)。
在本文中,我将只讨论其中一部分的实现。
如何做归一化工作
要选择我们将要使用的归一化步骤,我们需要一项特定的任务。对于本文,我们将假设我们要提取3000个#COVIDIOTS主题标签的情绪集,以了解人们对COVID-19流行的看法。
我获得了这些推文,可以在这里下载。我还使用这个名为best-profanity的漂亮工具来审查不好的文字,如果需要,可以将其添加到规范化管道中。他们也不包含撰写内容的人。
但是,我并没有继续删除每条推文中的姓名或检查任何政治立场等,因为这不是本文的目的,并且可以单独撰写另一篇文章(关于自动审查)。
在这种情况下,我们要执行以下步骤:删除重复的空白和标点符号;缩写替代;拼写更正。另外,我们已经讨论了定形化,下面我们使用它。
在完成代码部分之后,我们将统计分析应用上述归一化步骤的结果。
关于规范化的一件重要事情是函数的顺序很重要。我们可以说归一化是NLP预处理管道中的管道。如果我们不谨慎,则可能删除对以后的步骤很重要的信息(例如在定形之前删除停用词)。
我们甚至可以将这些步骤分为两个连续的组:“标记前步骤”(用于修改句子结构的步骤)和“标记后步骤”(仅用于修改单个标记的步骤),以避免重复标记步骤。但是,为简单起见,我们使用.split()函数。
像生产线一样,归一化步骤的顺序也很重要。
将推文解析为字符串列表之后,就可以开始创建函数了。顺便说一句,我在列表周围使用了一个名为tqdm的漂亮模块,因此一旦应用归一化过程,我们就会获得漂亮的进度条。以下是所需的导入:
from symspellpy.symspellpy import SymSpell, Verbosity import pkg_resources import re, string, json import spacy from tqdm import tqdm #Or, for jupyter notebooks: #from tqdm.notebook import tqdm
删除重复的空白和重复的标点符号(和网址):
这一步骤用简单的正则表达式替换完成。有改进的余地,但是可以满足我们的期望(这样,我们就不会有多种尺寸的标度和感叹号标记)。我们删除网址,因为这会减少很多我们拥有的不同令牌的数量(我们首先这样做,因为标点替换可能会阻止它)。
def simplify_punctuation_and_whitespace(sentence_list): norm_sents = [] print("Normalizing whitespaces and punctuation") for sentence in tqdm(sentence_list): sent = _replace_urls(sentence) sent = _simplify_punctuation(sentence) sent = _normalize_whitespace(sent) norm_sents.append(sent) return norm_sents def _replace_urls(text): url_regex = r'(https?:\/\/(?:www\.|(?!www))[a-zA-Z0-9][a-zA-Z0-9-]+[a-zA-Z0-9]\.[^\s]{2,}|www\.[a-zA-Z0-9][a-zA-Z0-9-]+[a-zA-Z0-9]\.[^\s]{2,}|https?:\/\/(?:www\.|(?!www))[a-zA-Z0-9]+\.[^\s]{2,}|www\.[a-zA-Z0-9]+\.[^\s]{2,})' text = re.sub(url_regex, "<URL>", text) return text def _simplify_punctuation(text): """ This function simplifies doubled or more complex punctuation. The exception is '...'. """ corrected = str(text) corrected = re.sub(r'([!?,;])\1+', r'\1', corrected) corrected = re.sub(r'\.{2,}', r'...', corrected) return corrected def _normalize_whitespace(text): """ This function normalizes whitespaces, removing duplicates. """ corrected = str(text) corrected = re.sub(r"//t",r"\t", corrected) corrected = re.sub(r"( )\1+",r"\1", corrected) corrected = re.sub(r"(\n)\1+",r"\1", corrected) corrected = re.sub(r"(\r)\1+",r"\1", corrected) corrected = re.sub(r"(\t)\1+",r"\1", corrected) return corrected.strip(" ")