FPGA硬件工程师Verilog面试题(四)

本文涉及的产品
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
全局流量管理 GTM,标准版 1个月
云解析 DNS,旗舰版 1个月
简介: FPGA硬件工程师Verilog面试题(四)

image.png


习题一:根据状态转移表实现时序电路



描述


  • 某同步时序电路转换表如下,请使用D触发器和必要的逻辑门实现此同步时序电路,用Verilog语言描述。

1b62bb24869346ecb71f31ee96b8d1c7.png

电路的接口如下图所示


e41f8f6ea2fa489cbc00374bd530854d.png


输入描述

  • input A
  • input clk
  • input rst_n

输出描述

  • output wire Y

代码实现

`timescale 1ns/1ns
module seq_circuit(
      input                A   ,
      input                clk ,
      input                rst_n,
      output   wire        Y   
);
    reg q0, q1;
    always@(posedge clk or negedge rst_n) begin
        if(~rst_n) begin
            q1 <= 0;
        end
        else begin
            q1 <= A ^ q0 ^ q1;
        end
    end
    always@(posedge clk or negedge rst_n) begin
        if(~rst_n) begin
            q0 <= 0;
        end
        else begin
            q0 <= ~q0;
        end
    end
    assign Y = q0 & q1;
endmodule


习题二:根据状态转移图实现时序电路



描述


  • 某同步时序电路的状态转换图如下,→上表示“C/Y”,圆圈内为现态,→指向次态。
  • 请使用D触发器和必要的逻辑门实现此同步时序电路,用Verilog语言描述。


c39efe582f984aa1b90afda8993109fc.png


电路的接口如下图所示,C是单bit数据输入端。



15aa40f88e4241af813f3f994cbce236.png

输入描述

  • input C
  • input clk
  • input rst_n

输出描述

  • output wire Y

代码实现

`timescale 1ns/1ns
module seq_circuit(
   input                C   ,
   input                clk ,
   input                rst_n,
   output   wire        Y   
);
    parameter ST0 = 2'b00;
    parameter ST1 = 2'b01;
    parameter ST2 = 2'b10;
    parameter ST3 = 2'b11;
    reg[1:0] cur_state;
    reg[1:0] next_state;
    reg Y_r;
    always@(posedge clk or negedge rst_n)
        if(!rst_n)
            cur_state <= ST0;
        else
            cur_state <= next_state;
    always@(*)
        case (cur_state)
            ST0: begin
                if(C == 1'b0) begin
                    next_state = ST0;
                end else begin
                    next_state = ST1;
                end
            end
            ST1: begin
                if(C == 1'b0) begin
                    next_state = ST3;
                end else begin
                    next_state = ST1;
                end
            end
            ST2: begin
                if(C == 1'b0) begin
                    next_state = ST0;
                end else begin
                    next_state = ST2;
                end
            end
            ST3: begin
                if(C == 1'b0) begin
                   next_state = ST3;
                end else begin
                    next_state = ST2;
                end
            end
        endcase
        always@(*)
        case (cur_state)
            ST0: begin
               Y_r = 1'b0;
            end
            ST1: begin
               Y_r = 1'b0;
            end
            ST2: begin
                if(C == 1'b1)
                    Y_r = 1'b1;
                else
                    Y_r = 1'b0;
            end
            ST3: begin
                Y_r = 1'b1;
            end
        endcase
    assign Y = Y_r;
endmodule

习题三:ROM的简单实现



描述


  • 实现一个深度为8,位宽为4bit的ROM,数据初始化为0,2,4,6,8,10,12,14。可以通过输入地址addr,输出相应的数据data。
  • 接口信号图如下:

569f2415277744d4bfae17b2cf43100f.png


  • 使用Verilog HDL实现以上功能并编写testbench验证。

输入描述

  • clk:系统时钟
  • rst_n:异步复位信号,低电平有效
  • addr:8bit位宽的无符号数,输入到ROM的地址

输出描述

  • data:4bit位宽的无符号数,从ROM中读出的数据

代码实现

`timescale 1ns/1ns
module rom(
  input clk,
  input rst_n,
  input [7:0]addr,
  output [3:0]data
);
  reg [3:0] rom_data [7:0];
  assign data = rom_data[addr];
//保持ROM中的数据不变 
  always @(posedge clk or negedge rst_n)
    if (!rst_n) 
      begin
        rom_data[0] <= 4'd0;
        rom_data[1] <= 4'd2;
        rom_data[2] <= 4'd4;
        rom_data[3] <= 4'd6;    
        rom_data[4] <= 4'd8;
        rom_data[5] <= 4'd10;
        rom_data[6] <= 4'd12;
        rom_data[7] <= 4'd14;
      end
    else 
      begin
        rom_data[0] <= rom_data[0];
        rom_data[1] <= rom_data[1];
        rom_data[2] <= rom_data[2];
        rom_data[3] <= rom_data[3];   
        rom_data[4] <= rom_data[4];
        rom_data[5] <= rom_data[5];
        rom_data[6] <= rom_data[6];
        rom_data[7] <= rom_data[7];
      end
endmodule


习题四:边沿检测



描述


  • 有一个缓慢变化的1bit信号a,编写一个程序检测a信号的上升沿给出指示信号rise,当a信号出现下降沿时给出指示信号down。
  • 注:rise,down应为单脉冲信号,在相应边沿出现时的下一个时钟为高,之后恢复到0,一直到再一次出现相应的边沿。


f6d2662d33f9489cace1a6a3a02af70e.png



  • 使用Verilog HDL实现以上功能并编写testbench验证。


输入描述


  • clk:系统时钟信号
  • rst_n:异步复位信号,低电平有效
  • a:单比特信号,作为待检测的信号

输出描述

  • rise:单比特信号,当输入信号a出现上升沿时为1,其余时刻为0
  • down:单比特信号,当输入信号a出现下降沿时为1,其余时刻为0

代码实现


`timescale 1ns/1ns
module edge_detect(
  input clk,
  input rst_n,
  input a,
  output reg rise,
  output reg down
);
  reg a_tem;
//缓存a的数值  
  always @(posedge clk or negedge rst_n)
    if (!rst_n)
      a_tem <= 1'b0;
    else
      a_tem <= a;
//检测边沿,给出相应的信号
  always @(posedge clk or negedge rst_n)
    if (!rst_n) 
      begin 
        rise <= 1'b0;
        down <= 1'b0;
      end
    else if (!a_tem && a)       //当前一时刻a=0,当前时刻a=1,表示a出现一次上升沿
      begin
        rise <= 1'b1;
        down <= 1'b0;
      end
    else if (a_tem && !a)     //当前一时刻a=1,当前时刻a=0,表示a出现一次下降沿
      begin
        down <= 1'b1;
        rise <= 1'b0;
      end
    else 
      begin
        down <= 1'b0;
        rise <= 1'b0;
      end
endmodule


相关文章
|
8天前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的信号发生器verilog实现,可以输出方波,脉冲波,m序列以及正弦波,可调整输出信号频率
本项目基于Vivado2019.2实现信号发生器,可输出方波、脉冲波、m随机序列和正弦波。完整程序无水印,含详细中文注释与操作视频。FPGA技术使信号发生器精度高、稳定性强、功能多样,适用于电子工程、通信等领域。方波、脉冲波、m序列及正弦波的生成原理分别介绍,代码核心部分展示。
|
5天前
|
数据采集 算法 数据安全/隐私保护
【硬件测试】基于FPGA的8PSK调制解调系统开发与硬件片内测试,包含信道模块,误码统计模块,可设置SNR
本文基于FPGA实现8PSK调制解调系统,包含高斯信道、误码率统计、ILA数据采集和VIO在线SNR设置模块。通过硬件测试和Matlab仿真,展示了不同SNR下的星座图。8PSK调制通过改变载波相位传递信息,具有高频谱效率和抗干扰能力。开发板使用及程序移植方法详见配套视频和文档。
21 7
|
1天前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的变步长LMS自适应滤波器verilog实现,包括testbench
### 自适应滤波器仿真与实现简介 本项目基于Vivado2022a实现了变步长LMS自适应滤波器的FPGA设计。通过动态调整步长因子,该滤波器在收敛速度和稳态误差之间取得良好平衡,适用于信道均衡、噪声消除等信号处理应用。Verilog代码展示了关键模块如延迟单元和LMS更新逻辑。仿真结果验证了算法的有效性,具体操作可参考配套视频。
95 74
|
12天前
|
数据采集 算法 测试技术
【硬件测试】基于FPGA的QPSK调制解调系统开发与硬件片内测试,包含信道模块,误码统计模块,可设置SNR
本文介绍了基于FPGA的QPSK调制解调系统的硬件实现与仿真效果。系统包含测试平台(testbench)、高斯信道模块、误码率统计模块,支持不同SNR设置,并增加了ILA在线数据采集和VIO在线SNR设置功能。通过硬件测试验证了系统在不同信噪比下的性能,提供了详细的模块原理及Verilog代码示例。开发板使用说明和移植方法也一并给出,确保用户能顺利在不同平台上复现该系统。
51 15
|
20天前
|
数据采集 算法 数据安全/隐私保护
【硬件测试】基于FPGA的2FSK调制解调系统开发与硬件片内测试,包含信道模块,误码统计模块,可设置SNR
本文介绍了基于FPGA的2FSK调制解调系统,包含高斯信道、误码率统计模块及testbench。系统增加了ILA在线数据采集和VIO在线SNR设置模块,支持不同SNR下的硬件测试,并提供操作视频指导。理论部分涵盖频移键控(FSK)原理,包括相位连续与不连续FSK信号的特点及功率谱密度特性。Verilog代码实现了FSK调制解调的核心功能,支持在不同开发板上移植。硬件测试结果展示了不同SNR下的性能表现。
64 6
|
2月前
|
存储 网络协议 安全
30 道初级网络工程师面试题,涵盖 OSI 模型、TCP/IP 协议栈、IP 地址、子网掩码、VLAN、STP、DHCP、DNS、防火墙、NAT、VPN 等基础知识和技术,帮助小白们充分准备面试,顺利踏入职场
本文精选了 30 道初级网络工程师面试题,涵盖 OSI 模型、TCP/IP 协议栈、IP 地址、子网掩码、VLAN、STP、DHCP、DNS、防火墙、NAT、VPN 等基础知识和技术,帮助小白们充分准备面试,顺利踏入职场。
113 2
|
5月前
|
网络协议 网络架构
OSPF邻居关系建立失败?揭秘网络工程师面试中最常见的难题,这些关键步骤你掌握了吗?网络配置的陷阱就在这里!
【8月更文挑战第19天】OSPF是网络工程中确保数据高效传输的关键协议。但常遇难题:路由器间无法建立OSPF邻居关系,影响网络稳定并成为面试热点。解决此问题需检查网络连通性(如使用`ping`),确认OSPF区域配置一致(通过`show running-config`),校准Hello与Dead计时器(配置`hello`和`dead`命令),及核查IP地址和子网掩码正确无误(使用`ip address`)。系统排查上述因素可确保OSPF稳定运行。
96 2
|
6月前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的MSK调制解调系统verilog开发,包含testbench,同步模块,高斯信道模拟模块,误码率统计模块
升级版FPGA MSK调制解调系统集成AWGN信道模型,支持在Vivado 2019.2中设置不同SNR仿真误码率。示例SNR值从0到15,结果展示解调质量随SNR提升。MATLAB仿真验证了MSK性能,图片显示了仿真结果。 ### 理论概要 研究聚焦于软件无线电中的MSK调制解调,利用Verilog实现。MSK是一种相位连续、恒包络的二进制调制技术,优点包括频谱效率高。系统采用无核设计,关键模块包括调制器、解调器和误码检测。复位、输入数据、中频信号等关键信号通过Verilog描述,并通过Chipscope在线观察。
122 6
基于FPGA的MSK调制解调系统verilog开发,包含testbench,同步模块,高斯信道模拟模块,误码率统计模块
|
5月前
|
运维 Kubernetes 关系型数据库
云计算运维工程师面试技巧
【8月更文挑战第6天】
455 1
|
6月前
|
算法 网络协议 Linux

热门文章

最新文章