热加载技术:修改Python代码并实时查看结果 ⛵

简介: 本文讲解Python热加载技术,以及Reloading工具库的使用。暂停运行的代码,修改补充后重新运行,意味着训练了数个小时的模型参数被舍弃。热加载技术可以解决这个问题。
1f484a2e6cc4c2ca3593063d1297f118.png
💡 作者: 韩信子@ ShowMeAI
📘 Python3◉技能提升系列https://www.showmeai.tech/tutorials/56
📘 本文地址https://www.showmeai.tech/article-detail/406
📢 声明:版权所有,转载请联系平台与作者并注明出处
📢 收藏 ShowMeAI查看更多精彩内容

💡 引言

5064d1fab40b5c0bd5590fc7ad03cacb.png

在运行 Python 脚本时,我经常发现自己忘记打印所有必要的详细信息来跟踪代码项目的进度和中间信息。我们经常在训练机器学习模型时遇到各种各样的信息记录问题,当然,问题不仅限于机器学习,像爬虫等场景也需要做大量记录,但我们经常在运行起代码之后才意识到忘记做一些需要记录的信息输出。

如果我们暂停运行的代码,重新修改补充代码并运行,代价可能是我们已经训练数个小时的模型参数被舍弃而重新训练,这是非常不值当的。在python中,有另外一项技术可以解决这个问题,在本篇内容中,我们就来给大家讲讲python的热加载技术。

💡 Reloading库

📘Reloading 是一个 Python工具库,它让我们可以在每次迭代之前从源代码中重新加载(或函数),我们可以修改已经运行的代码并向其添加更多详细信息,而不会丢失任何当前已执行过程。

我们可以通过以下命令安装reloading:

pip install reloading
AI 代码解读

💦 重新加载循环体代码

假设我们有一个循环,它完成一个简单的功能:每次迭代后将值减半。但我们忘记在这个循环中打印迭代次数了,现在想修改它。

from time import sleep

value = 100
iterations = 10

for iteration in range(iterations):

    print(f"value = {value}")
    value = value/2
    sleep(2)
AI 代码解读

不借助reloading,我们只能重新运行它。

但是,借助 reloading,我们可以重新加载循环体代码,如下所示:

from time import sleep
from reloading import reloading

value = 100
iterations = 10

for iteration in reloading(range(iterations)):

    print(f"value = {value}")
    value = value/2
    sleep(2)
AI 代码解读

动图演示如下:

11cf75cc72a2b50aa77cc1d8ca9184b2.gif

💦 重新加载修改后的函数

与重新加载循环体代码类似,我们也可以在每次迭代后重新加载函数体。以函数 half_value为例:

from time import sleep

def half_value(value):
    print(f"value = {value}")
    value = value/2
    return value

value = 100
iterations = 10

for iteration in range(iterations):

    value = half_value(value)
    sleep(2)
AI 代码解读

要重新加载函数体,我们可以使用 reloading构建装饰器。如下所示:

from time import sleep
from reloading import reloading

@reloading
def half_value(value):
    print(f"value = {value}")
    value = value/2
    return value

value = 100
iterations = 10

for iteration in range(iterations):

    value = half_value(value)
    sleep(2)
AI 代码解读

修改之后,我们可以在运行时修改函数。动图演示如下:

f718c244bbfaff28419f257c81892b6e.gif

参考资料

推荐阅读

e9190f41b8de4af38c8a1a0c96f0513b~tplv-k3u1fbpfcp-zoom-1.image

目录
打赏
0
0
0
0
2387
分享
相关文章
【03】仿站技术之python技术,看完学会再也不用去购买收费工具了-修改整体页面做好安卓下载发给客户-并且开始提交网站公安备案-作为APP下载落地页文娱产品一定要备案-包括安卓android下载(简单)-ios苹果plist下载(稍微麻烦一丢丢)-优雅草卓伊凡
【03】仿站技术之python技术,看完学会再也不用去购买收费工具了-修改整体页面做好安卓下载发给客户-并且开始提交网站公安备案-作为APP下载落地页文娱产品一定要备案-包括安卓android下载(简单)-ios苹果plist下载(稍微麻烦一丢丢)-优雅草卓伊凡
34 13
【03】仿站技术之python技术,看完学会再也不用去购买收费工具了-修改整体页面做好安卓下载发给客户-并且开始提交网站公安备案-作为APP下载落地页文娱产品一定要备案-包括安卓android下载(简单)-ios苹果plist下载(稍微麻烦一丢丢)-优雅草卓伊凡
|
1月前
|
【02】优雅草央央逆向技术篇之逆向接口协议篇-以小红书为例-python逆向小红书将用户名转换获得为uid-优雅草央千澈
【02】优雅草央央逆向技术篇之逆向接口协议篇-以小红书为例-python逆向小红书将用户名转换获得为uid-优雅草央千澈
95 1
【01】仿站技术之python技术,看完学会再也不用去购买收费工具了-用python扒一个app下载落地页-包括安卓android下载(简单)-ios苹果plist下载(稍微麻烦一丢丢)-客户的麻将软件需要下载落地页并且要做搜索引擎推广-本文用python语言快速开发爬取落地页下载-优雅草卓伊凡
【01】仿站技术之python技术,看完学会再也不用去购买收费工具了-用python扒一个app下载落地页-包括安卓android下载(简单)-ios苹果plist下载(稍微麻烦一丢丢)-客户的麻将软件需要下载落地页并且要做搜索引擎推广-本文用python语言快速开发爬取落地页下载-优雅草卓伊凡
23 8
【01】仿站技术之python技术,看完学会再也不用去购买收费工具了-用python扒一个app下载落地页-包括安卓android下载(简单)-ios苹果plist下载(稍微麻烦一丢丢)-客户的麻将软件需要下载落地页并且要做搜索引擎推广-本文用python语言快速开发爬取落地页下载-优雅草卓伊凡
【02】仿站技术之python技术,看完学会再也不用去购买收费工具了-本次找了小影-感觉页面很好看-本次是爬取vue需要用到Puppeteer库用node.js扒一个app下载落地页-包括安卓android下载(简单)-ios苹果plist下载(稍微麻烦一丢丢)-优雅草卓伊凡
【02】仿站技术之python技术,看完学会再也不用去购买收费工具了-本次找了小影-感觉页面很好看-本次是爬取vue需要用到Puppeteer库用node.js扒一个app下载落地页-包括安卓android下载(简单)-ios苹果plist下载(稍微麻烦一丢丢)-优雅草卓伊凡
29 7
【02】仿站技术之python技术,看完学会再也不用去购买收费工具了-本次找了小影-感觉页面很好看-本次是爬取vue需要用到Puppeteer库用node.js扒一个app下载落地页-包括安卓android下载(简单)-ios苹果plist下载(稍微麻烦一丢丢)-优雅草卓伊凡
|
23天前
|
Python高性能编程:五种核心优化技术的原理与Python代码
Python在高性能应用场景中常因执行速度不及C、C++等编译型语言而受质疑,但通过合理利用标准库的优化特性,如`__slots__`机制、列表推导式、`@lru_cache`装饰器和生成器等,可以显著提升代码效率。本文详细介绍了这些实用的性能优化技术,帮助开发者在不牺牲代码质量的前提下提高程序性能。实验数据表明,这些优化方法能在内存使用和计算效率方面带来显著改进,适用于大规模数据处理、递归计算等场景。
58 5
Python高性能编程:五种核心优化技术的原理与Python代码
|
2月前
|
课程设计项目之基于Python实现围棋游戏代码
游戏进去默认为九路玩法,当然也可以选择十三路或是十九路玩法 使用pycharam打开项目,pip安装模块并引用,然后运行即可, 代码每行都有详细的注释,可以做课程设计或者毕业设计项目参考
78 33
【01】优雅草央央逆向技术篇之逆向接口协议篇-如何用python逆向接口协议?python逆向接口协议的原理和步骤-优雅草央千澈
【01】优雅草央央逆向技术篇之逆向接口协议篇-如何用python逆向接口协议?python逆向接口协议的原理和步骤-优雅草央千澈
66 6
【Azure Developer】Python代码调用Graph API将外部用户添加到组,结果无效,也无错误信息
根据Graph API文档,在单个请求中将多个成员添加到组时,Python代码示例中的`members@odata.bind`被错误写为`members@odata_bind`,导致用户未成功添加。
52 10
探索Python编程:从基础到高级
在这篇文章中,我们将一起深入探索Python编程的世界。无论你是初学者还是有经验的程序员,都可以从中获得新的知识和技能。我们将从Python的基础语法开始,然后逐步过渡到更复杂的主题,如面向对象编程、异常处理和模块使用。最后,我们将通过一些实际的代码示例,来展示如何应用这些知识解决实际问题。让我们一起开启Python编程的旅程吧!

热门文章

最新文章

推荐镜像

更多
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等