深度学习如何证明对网络安全有用

简介: 网络攻击的威胁最近急剧增加,传统的措施现在似乎不够有效。而网络安全领域的深度学习正在迅速取得进展,并且可能是解决所有网络安全问题的关键。

image.png
网络攻击的威胁最近急剧增加,传统的措施现在似乎不够有效。

正因为如此,网络安全领域的深度学习正在迅速取得进展,并且可能是解决所有网络安全问题的关键。

随着技术的出现,对数据安全的威胁也在增加,需要使用网络安全工具来保护组织的运营。然而,由于大多数网络安全工具的依赖,企业正在苦苦挣扎。企业依赖于签名或妥协证据来检测其用来保护业务的技术的威胁检测能力。因为它们只对识别已经意识到的风险有用,所以这些技术对未知的攻击毫无用处。这就是网络安全领域的深度学习可以改变事件进程的地方。深度学习是机器学习的一个分支,擅长使用数据分析来解决问题。通过让深度神经网络处理大量的数据,世界上没有其他机器学习可以处理、消化和处理这些数据,我们正在模仿大脑及其运作方式。
深度学习在网络安全中的应用
网络安全行业正面临着众多挑战,而深度学习技术或许正是其救星。

行为分析
对于任何企业而言,基于深度学习的安全策略都是跟踪和检查用户活动和习惯。由于其超越了安全机制,有时不会触发任何信号或警报,因此其比针对网络的传统恶意行为更难以发现。例如,当员工将其合法访问权限用于恶意目的而不是从外部侵入系统时,就会发生内部攻击,这使得许多网络保护系统在面对此类攻击时无效。

针对这些攻击的一种有效防御是用户和实体行为分析(UEBA)。经过一段时间的调整后,其可以学习员工的典型行为模式,并识别可能是内部攻击的可疑活动,例如在非正常时间访问系统,就会发出警报。

入侵检测
入侵检测和防御系统(IDS/IPS)能够识别可疑的网络活动,阻止黑客获得访问权限,并通知用户。它们通常具有众所周知的签名和常见的攻击格式。这有助于防范数据泄露等风险。

以前,ML算法处理此操作。然而,由于这些算法,系统产生了一些误报,这使得安全团队的工作变得费力,并增加已经过度的疲惫。通过更准确地分析流量,减少错误警报的数量,并协助安全团队区分恶意和合法的网络活动,深度学习、卷积神经网络和循环神经网络(RNN)可用于开发更智能的ID/IP系统。

处理恶意软件
传统的恶意软件解决方案,如典型的防火墙,使用基于签名的检测技术来查找恶意软件。该业务维护了一个已知风险的数据库,并定期更新以包括最近出现的全新危险。虽然这种方法可以有效应对基本威胁,但无法应对更复杂的威胁。深度学习算法可以识别更复杂的威胁,因为其不依赖于已知签名和典型攻击技术的记忆。相反,其会熟悉系统,并能看到可能是恶意软件或恶意活动迹象的奇怪行为。

电子邮件监控
为了阻止任何形式的网络犯罪,监控员工的官方电子邮件账户是至关重要的。例如,网络钓鱼攻击经常通过向员工发送电子邮件并从中索取敏感信息来进行。深度学习和网络安全软件可以用来防止这类攻击。使用自然语言处理,可以检查电子邮件中的任何可疑活动。

总结
自动化对于抵御企业必须应对的大量风险至关重要,但普通的机器学习局限性太大,仍然需要大量调整和人力参与才能产生预期的结果。网络安全中的深度学习超越了不断改进和学习的范围,因此其可以预见危险并在危险发生之前将其阻止。

相关文章
|
2月前
|
机器学习/深度学习 数据可视化 计算机视觉
目标检测笔记(五):详细介绍并实现可视化深度学习中每层特征层的网络训练情况
这篇文章详细介绍了如何通过可视化深度学习中每层特征层来理解网络的内部运作,并使用ResNet系列网络作为例子,展示了如何在训练过程中加入代码来绘制和保存特征图。
66 1
目标检测笔记(五):详细介绍并实现可视化深度学习中每层特征层的网络训练情况
|
2月前
|
机器学习/深度学习 自然语言处理 搜索推荐
深度学习的魔法:如何用神经网络解决复杂问题
在这篇文章中,我们将探讨深度学习的基本原理和它在各种领域中的应用。通过一些实际的例子,我们将看到深度学习如何帮助我们解决复杂的问题,如图像识别、自然语言处理和推荐系统等。我们还将讨论一些最新的研究成果和技术趋势,以及深度学习在未来可能面临的挑战和机遇。
|
2月前
|
机器学习/深度学习 人工智能 算法框架/工具
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【10月更文挑战第7天】本文将深入探讨卷积神经网络(CNN)的基本原理,以及它如何在图像识别领域中大放异彩。我们将从CNN的核心组件出发,逐步解析其工作原理,并通过一个实际的代码示例,展示如何利用Python和深度学习框架实现一个简单的图像分类模型。文章旨在为初学者提供一个清晰的入门路径,同时为有经验的开发者提供一些深入理解的视角。
|
21天前
|
机器学习/深度学习 人工智能 算法框架/工具
深度学习中的卷积神经网络(CNN)入门
【10月更文挑战第41天】在人工智能的璀璨星空下,卷积神经网络(CNN)如一颗耀眼的新星,照亮了图像处理和视觉识别的路径。本文将深入浅出地介绍CNN的基本概念、核心结构和工作原理,同时提供代码示例,带领初学者轻松步入这一神秘而又充满无限可能的领域。
|
27天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络:从理论到实践
【10月更文挑战第35天】在人工智能的浪潮中,深度学习技术以其强大的数据处理能力成为科技界的宠儿。其中,卷积神经网络(CNN)作为深度学习的一个重要分支,在图像识别和视频分析等领域展现出了惊人的潜力。本文将深入浅出地介绍CNN的工作原理,并结合实际代码示例,带领读者从零开始构建一个简单的CNN模型,探索其在图像分类任务中的应用。通过本文,读者不仅能够理解CNN背后的数学原理,还能学会如何利用现代深度学习框架实现自己的CNN模型。
|
26天前
|
机器学习/深度学习 人工智能 算法框架/工具
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【10月更文挑战第36天】探索卷积神经网络(CNN)的神秘面纱,揭示其在图像识别领域的威力。本文将带你了解CNN的核心概念,并通过实际代码示例,展示如何构建和训练一个简单的CNN模型。无论你是深度学习的初学者还是希望深化理解,这篇文章都将为你提供有价值的见解。
|
24天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。
71 0
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
|
1月前
|
机器学习/深度学习 搜索推荐 安全
深度学习之社交网络中的社区检测
在社交网络分析中,社区检测是一项核心任务,旨在将网络中的节点(用户)划分为具有高内部连接密度且相对独立的子群。基于深度学习的社区检测方法,通过捕获复杂的网络结构信息和节点特征,在传统方法基础上实现了更准确、更具鲁棒性的社区划分。
61 7
|
1月前
|
机器学习/深度学习 自然语言处理 TensorFlow
深度学习的奥秘:探索神经网络背后的魔法
【10月更文挑战第22天】本文将带你走进深度学习的世界,揭示神经网络背后的神秘面纱。我们将一起探讨深度学习的基本原理,以及如何通过编程实现一个简单的神经网络。无论你是初学者还是有一定基础的学习者,这篇文章都将为你提供有价值的信息和启示。让我们一起踏上这段奇妙的旅程吧!
|
2月前
|
机器学习/深度学习 人工智能 自动驾驶
深度学习中的卷积神经网络(CNN)及其应用
【10月更文挑战第21天】本文旨在深入探讨深度学习领域的核心组成部分——卷积神经网络(CNN)。通过分析CNN的基本结构、工作原理以及在图像识别、语音处理等领域的广泛应用,我们不仅能够理解其背后的技术原理,还能把握其在现实世界问题解决中的强大能力。文章将用浅显的语言和生动的例子带领读者一步步走进CNN的世界,揭示这一技术如何改变我们的生活和工作方式。