PID参数快速整定

简介: PID参数快速整定

常用口诀

参数整定找最佳,从小到大顺序查

先是比例后积分,最后再把微分加

曲线振荡很频繁,比例度盘要放大

曲线漂浮绕大湾,比例度盘往小扳

曲线偏离回复慢,积分时间往下降

曲线波动周期长,积分时间再加长

曲线振荡频率快,先把微分降下来

动差大来波动慢。微分时间应加长

理想曲线两个波,前高后低4比1

一看二调多分析,调节质量不会低


01 基础知识


比例(P)控制

 

比例控制是一种最简单的控制方式。其控制器的输出与输入误差信号成比例关系。当仅有比例控制时系统输出存在稳态误差(Steady-state error)。


积分(I)控制

 

在积分控制中,控制器的输出与输入误差信号的积分成正比关系。对一个自动控制系统,如果在进入稳态后存在稳态误差,则称这个控制系统是有稳态误差的或简称有差系统(System with Steady-state Error)。为了消除稳态误差,在控制器中必须引入“积分项”。积分项对误差取决于时间的积分,随着时间的增加,积分项会增大。这样,即便误差很小,积分项也会随着时间的增加而加大,它推动控制器的输出增大使稳态误差进一步减小,直到等于零。因此,比例+积分(PI)控制器,可以使系统在进入稳态后无稳态误差。


微分(D)控制

 

在微分控制中,控制器的输出与输入误差信号的微分(即误差的变化率)成正比关系。自动控制系统在克服误差的调节过程中可能会出现振荡甚至失稳。其原因是由于存在有较大惯性组件(环节)或有滞后(delay)组件,具有抑制误差的作用,其变化总是落后于误差的变化。解决的办法是使抑制误差的作用的变化“超前”,即在误差接近零时,抑制误差的作用就应该是零。这就是说,在控制器中仅引入“比例”项往往是不够的,比例项的作用仅是放大误差的幅值,而目前需要增加的是“微分项”,它能预测误差变化的趋势,这样,具有比例+微分的控制器,就能够提前使抑制误差的控制作用等于零,甚至为负值,从而避免了被控量的严重超调。所以对有较大惯性或滞后的被控对象,比例+微分(PD)控制器能改善系统在调节过程中的动态特性。


02 PID控制器的参数整定


PID控制器的参数整定是控制系统设计的核心内容。它是根据被控过程的特性确定PID控制器的比例系数、积分时间和微分时间的大小。


  PID控制器参数整定的方法很多,概括起来有两大类:

 ①理论计算整定法:

   它主要是依据系统的数学模型,经过理论计算确定控制器参数。这种方法所得到的计算数据未必可以直接用,还必须通过工程实际进行调整和修改。

 ②工程整定方法:

   它主要依赖工程经验,直接在控制系统的试验中进行,且方法简单、易于掌握,在工程实际中被广泛采用。

 PID控制器参数的工程整定方法,主要有临界比例法、反应曲线法和衰减法。

 三种方法各有其特点,其共同点都是通过试验,然后按照工程经验公式对控制器参数进行整定。但无论采用哪一种方法所得到的控制器参数,都需要在实际运行中进行最后调整与完善。

 现在一般采用的是临界比例法。利用该方法进行PID控制器参数的整定步骤如下:

 (1)首先预选择一个足够短的采样周期让系统工作﹔

 (2)仅加入比例控制环节,直到系统对输入的阶跃响应出现临界振荡,记下这时的比例放大系数和临界振荡周期﹔

 (3)在一定的控制度下通过公式计算得到PID控制器的参数。


20201018194431465.png

01 临界比例度法

  

一个调节系统,在阶跃干扰作用下,出现既不发散也不衰减的等幅震荡过程,此过程成为等幅振荡过程,如下图所示。此时调节器的比例度为临界比例度δk,被调参数的工作周期为为临界周期Tk


image.png

临界比例度法整定PID参数步骤

  

1、将调节器积分时间设定为无穷大、微分时间设定为零(即Ti=∞,Td=0),比例度适当取值,调节系统按纯比例作用投入。稳定后,适当减小比例度,在外界干扰作用下,观察过程变化情况,寻取系统等幅振荡临界状态,得到临界参数。


2、根据临界比例度δk和为临界周期Tk,按下表计算出调节器参数整定值


20201018194827563.png

3、将计算所得的调节器参数输入调节器后再次运行调节系统,观察过程变化情况。多数情况下系统均能稳定运行状态,如果还未达到理想控制状态,进需要对参数微调即可。


02 衰减曲线法


衰减曲线法整定调节器参数通常会按照4:1和10:1两种衰减方式进行,两种方法操作步骤相同,但分别适用于不同工况的调节器参数整定。


4:1衰减曲线法整定调节器参数


纯比例度作用下的自动调节系统,在比例度逐渐减小时,出现4:1衰减振荡过程,此时比例度为4:1衰减比例度δs,两个相邻同向波峰之间的距离为4:1衰减操作周期TS,如下图所示


20201018194624637.png


4:1衰减曲线法整定PID参数步骤如下:


1、将调节器积分时间设定为无穷大、微分时间设定为零(即Ti=∞,Td=0),比例度适当取值,调节系统按纯比例作用投入。系统稳定后,逐步减小比例度,根据工艺操作的许可程度加2%-3%的干扰,观察调节过程变化情况,直到调节过程变化达到规定的4:1衰减比为止,得到4:1衰减情况下的比例度δs和衰减操作周期TS。

 

2、根据δs和Ts值按以下公式计算出调节器整定参数


20201018194641364.png


  3、将比例度放在比计算值略大的数值上,逐步引入积分和微分作用。

  4、将比例度降至计算值上,观察运行,适当调整。


10:1衰减曲线法整定调节器参数


在部分调节系统中,由于采用4:1衰减比仍嫌振荡比较厉害,则可采用10:1的衰减过程,如下图所示。这种情况下由于衰减太快,要测量操作周期比较困难,但可测取从施加干扰开始至第一个波峰飞升时间Tr。


20201018194713596.png


10:1衰减曲线法整定调节参数步骤和4:1衰减曲线法完全一致,仅采用的整定参数和经验公式不同。


20201018194735410.png


相关文章
基于DSP的信号采样与重构
基于DSP的信号采样与重构
295 2
|
算法
初探PID—速度闭环控制
本文简单介绍了什么是PID,PID的作用,给出了PID实现程序。
540 0
|
4月前
|
机器学习/深度学习 算法 机器人
【PID】基于人工神经网络的PID控制器,用于更好的系统响应研究(Matlab&Simulink代码实现)
【PID】基于人工神经网络的PID控制器,用于更好的系统响应研究(Matlab&Simulink代码实现)
384 15
|
3月前
|
缓存 网络架构
详细解释udp的传输过程(含多图)
本文详解UDP数据包的传输过程,涵盖跨交换机与路由器的完整流程。分析10KB UDP包的分片机制,需拆分为7个IP数据报传输。交换机和中间路由器不会等待完整数据接收,而是逐帧/分片转发,且每个IP分片均包含完整IP地址信息。
|
存储 算法
pid控制
这篇文章详细介绍了PID控制算法的理论基础、组成部分、不同形式的算法(位置式和增量式PID),以及参数调试的步骤和技巧,旨在帮助读者理解和应用PID控制器进行有效的系统控制。
1006 2
pid控制
|
10月前
|
人工智能 Java 数据处理
Java高级应用开发:基于AI的微服务架构优化与性能调优
在现代企业级应用开发中,微服务架构虽带来灵活性和可扩展性,但也增加了系统复杂性和性能瓶颈。本文探讨如何利用AI技术,特别是像DeepSeek这样的智能工具,优化Java微服务架构。AI通过智能分析系统运行数据,自动识别并解决性能瓶颈,优化服务拆分、通信方式及资源管理,实现高效性能调优,助力开发者设计更合理的微服务架构,迎接未来智能化开发的新时代。
基于双PI结构FOC闭环控制的永磁同步电机控制系统simulink建模与仿真
本课题基于双PI结构的FOC闭环控制,对永磁同步电机(PMSM)进行Simulink建模与仿真。系统通过坐标变换、电流环和速度环控制及SPWM调制,实现对电机电流和速度的精确调节。使用MATLAB2022a进行建模,仿真结果显示了系统的高效性和精确性。该控制系统提高了PMSM的动态响应速度、稳态精度和效率,并降低了噪声。
|
安全 前端开发 Java
SpringBoot接口设计防篡改和防重放攻击
本文介绍了API接口的安全问题及解决方案,包括防止接口参数被篡改和重放攻击的方法。主要措施有:使用HTTPS传输、参数加密、时间戳签名验证等。并通过创建过滤器对请求参数进行签名验证,确保接口的安全性。
1110 10
|
机器学习/深度学习 算法
常用的PID有哪些?
常用的PID有哪些?
763 1
常用的PID有哪些?
|
敏捷开发 Kubernetes 持续交付
阿里云云效产品使用问题之Ingress想配置多个域名,该怎么操作
云效作为一款全面覆盖研发全生命周期管理的云端效能平台,致力于帮助企业实现高效协同、敏捷研发和持续交付。本合集收集整理了用户在使用云效过程中遇到的常见问题,问题涉及项目创建与管理、需求规划与迭代、代码托管与版本控制、自动化测试、持续集成与发布等方面。