<JVM上篇:内存与垃圾回收篇>07-方法区(一)

简介: <JVM上篇:内存与垃圾回收篇>07-方法区

7. 方法区


a8ec1693fcff5b0e85cad15d5ac4ac63.png


从线程共享与否的角度来看


f356e103d9f75e3c0086079bba2b28a9.png


7.1. 栈、堆、方法区的交互关系


f356e103d9f75e3c0086079bba2b28a9.png


7.2. 方法区的理解


官方文档:Chapter 2. The Structure of the Java Virtual Machine (oracle.com)



6490bbb66a2183a0241af1c7820750af.png


7.2.1. 方法区在哪里?


《Java 虚拟机规范》中明确说明:“尽管所有的方法区在逻辑上是属于堆的一部分,但一些简单的实现可能不会选择去进行垃圾收集或者进行压缩。”但对于 HotSpotJVM 而言,方法区还有一个别名叫做 Non-Heap(非堆),目的就是要和堆分开。


bd28de5d3ce09654805ddd01e3d8a4a6.png


所以,方法区看作是一块独立于 Java 堆的内存空间。


代码层面也可以进行演示:


e4a19b3abfb08f1c58646d54b2a3789b.png


7.2.2. 方法区的基本理解


方法区(Method Area)与 Java 堆一样,是各个线程共享的内存区域。(当多个线程都需要调用某个类时,并且该类没有被加载,只需要其中一个线程加载即可)

方法区在 JVM 启动的时候被创建,并且它的实际的物理内存空间中和 Java 堆区一样都可以是不连续的。

方法区的大小,跟堆空间一样,可以选择固定大小或者可扩展。

方法区的大小决定了系统可以保存多少个类,如果系统定义了太多的类,导致方法区溢出,虚拟机同样会抛出内存溢出错误:java.lang.OutOfMemoryError: PermGen space 或者java.lang.OutOfMemoryError: Metaspace

加载大量的第三方的 jar 包;Tomcat 部署的工程过多(30~50 个);大量动态的生成反射类

关闭 JVM 就会释放这个区域的内存。


7.2.3. HotSpot 中方法区的演进


在 jdk7 及以前,习惯上把方法区,称为永久代。jdk8 开始,使用元空间取代了永久代。


fb71df89c52f89d3b711e0b648de244c.png


本质上,方法区和永久代并不等价。仅是对 hotspot 而言的。《Java 虚拟机规范》对如何实现方法区,不做统一要求。例如:BEA JRockit / IBM J9 中不存在永久代的概念。


补充:


可以把方法区看成接口,永久代或者元空间看成其实现


元空间是方法区的一种实现. 方法区是一种规范,永久代和元空间是两种不同的实现方式


元空间不在虚拟机设置的内存中,而是使用了本地内存


现在来看,当年使用永久代,不是好的 idea。导致 Java 程序更容易 OOM(超过-XX:MaxPermsize上限)


7d0789c206d53bfb4b6004052236197a.png


而到了 JDK8,终于完全废弃了永久代的概念,改用与 JRockit、J9 一样在本地内存中实现的元空间(Metaspace)来代替


1c229dc39ffc79e8e4f3abf765378d3b.png


元空间的本质和永久代类似,都是对 JVM 规范中方法区的实现。不过元空间与永久代最大的区别在于:元空间不在虚拟机设置的内存中,而是使用本地内存 (可以达到几个G…更不容易出现OOM)


永久代、元空间二者并不只是名字变了,内部结构也调整了


根据《Java 虚拟机规范》的规定,如果方法区无法满足新的内存分配需求时,将抛出 OOM 异常


7.3. 设置方法区大小与 OOM


7.3.1. 设置方法区内存的大小


方法区的大小不必是固定的,JVM 可以根据应用的需要动态调整。


jdk7 及以前


通过-XX:Permsize来设置永久代初始分配空间。默认值是 20.75M

通过-XX:MaxPermsize来设定永久代最大可分配空间。32 位机器默认是 64M,64 位机器模式是 82M

当 JVM 加载的类信息容量超过了这个值,会报异常OutOfMemoryError:PermGen space。


5e9c8f7bd7e137e2accea45a6a6a1fca.png


JDK8 以后


元数据区大小可以使用参数 -XX:MetaspaceSize 和 -XX:MaxMetaspaceSize指定

默认值依赖于平台。windows 下,-XX:MetaspaceSize=21M -XX:MaxMetaspaceSize=-1//即没有限制。

与永久代不同,如果不指定大小,默认情况下,虚拟机会耗尽所有的可用系统内存。如果元数据区发生溢出,虚拟机一样会抛出异常OutOfMemoryError:Metaspace

-XX:MetaspaceSize:设置初始的元空间大小。对于一个 64 位的服务器端 JVM 来说,其默认的-XX:MetaspaceSize值为 21MB。这就是初始的高水位线,一旦触及这个水位线,Full GC 将会被触发并卸载没用的类(即这些类对应的类加载器不再存活),然后这个高水位线将会重置。新的高水位线的值取决于 GC 后释放了多少元空间。如果释放的空间不足,那么在不超过MaxMetaspaceSize时,适当提高该值。如果释放空间过多,则适当降低该值。

如果初始化的高水位线设置过低,上述高水位线调整情况会发生很多次。通过垃圾回收器的日志可以观察到 Full GC 多次调用。为了避免频繁地 GC,建议将-XX:MetaspaceSize设置为一个相对较高的值。

代码演示


/**
 *  测试设置方法区大小参数的默认值
 *
 *  jdk7及以前:
 *  -XX:PermSize=100m -XX:MaxPermSize=100m
 *
 *  jdk8及以后:
 *  -XX:MetaspaceSize=100m  -XX:MaxMetaspaceSize=100m
 * @author shkstart  shkstart@126.com
 * @create 2020  12:16
 */
public class MethodAreaDemo {
    public static void main(String[] args) {
        System.out.println("start...");
       try {
           Thread.sleep(1000000);
       } catch (InterruptedException e) {
           e.printStackTrace();
       }
        System.out.println("end...");
    }
}

66dc07ebf2fd5d9d587275c54e62adb9.png


举例 1:《深入理解 Java 虚拟机》的例子

07b18c558142ff6c06a8c5192a7a418f.png

举例 2

/**
 * jdk6/7中:
 * -XX:PermSize=10m -XX:MaxPermSize=10m
 *
 * jdk8中:
 * -XX:MetaspaceSize=10m -XX:MaxMetaspaceSize=10m
 *
 * @author shkstart  shkstart@126.com
 * @create 2020  22:24
 */
public class OOMTest extends ClassLoader {
    public static void main(String[] args) {
        int j = 0;
        try {
            OOMTest test = new OOMTest();
            for (int i = 0; i < 10000; i++) {
                //创建ClassWriter对象,用于生成类的二进制字节码
                ClassWriter classWriter = new ClassWriter(0);
                //指明版本号,修饰符,类名,包名,父类,接口
                classWriter.visit(Opcodes.V1_6, Opcodes.ACC_PUBLIC, "Class" + i, null, "java/lang/Object", null);
                //返回byte[]
                byte[] code = classWriter.toByteArray();
                //类的加载
                test.defineClass("Class" + i, code, 0, code.length);//Class对象
                j++;
            }
        } finally {
            System.out.println(j);
        }
    }
}

894abfafe8c268e31af25ea95aa7d28c.png


a9a8603e748614d2c671706e1bec12b9.png

7.3.2. 如何解决这些 OOM

要解决 OOM 异常或 heap space 的异常,一般的手段是首先通过内存映像分析工具(如 Eclipse Memory Analyzer)对 dump 出来的堆转储快照进行分析,重点是确认内存中的对象是否是必要的,也就是要先分清楚到底是出现了内存泄漏(Memory Leak)还是内存溢出(Memory Overflow)


如果是内存泄漏,可进一步通过工具查看泄漏对象到 GC Roots 的引用链。于是就能找到泄漏对象是通过怎样的路径与 GCRoots 相关联并导致垃圾收集器无法自动回收它们的。掌握了泄漏对象的类型信息,以及 GCRoots 引用链的信息,就可以比较准确地定位出泄漏代码的位置。


一句话: 内存泄漏就是有大量的引用指向某些对象,但是这些对象以后不会使用了,但是因为它们还和GC ROOT有关联,所以导致以后这些对象也不会被回收,这就是内存泄漏的问题


如果不存在内存泄漏,换句话说就是内存中的对象确实都还必须存活着,那就应当检查虚拟机的堆参数(-Xmx与-Xms),与机器物理内存对比看是否还可以调大,从代码上检查是否存在某些对象生命周期过长、持有状态时间过长的情况,尝试减少程序运行期的内存消耗。


7.4. 方法区的内部结构


8a5fcba10ccb773f185288ac22bde206.png


7.4.1. 方法区(Method Area)存储什么?

《深入理解 Java 虚拟机》书中对方法区(Method Area)存储内容描述如下:

它用于存储已被虚拟机加载的类型信息、常量、静态变量、即时编译器编译后的代码缓存等。

c206828c41a70b5c3ad1916d6428b314.jpg


相关文章
|
10天前
|
监控 算法 Java
Java虚拟机(JVM)垃圾回收机制深度剖析与优化策略####
本文作为一篇技术性文章,深入探讨了Java虚拟机(JVM)中垃圾回收的工作原理,详细分析了标记-清除、复制算法、标记-压缩及分代收集等主流垃圾回收算法的特点和适用场景。通过实际案例,展示了不同GC(Garbage Collector)算法在应用中的表现差异,并针对大型应用提出了一系列优化策略,包括选择合适的GC算法、调整堆内存大小、并行与并发GC调优等,旨在帮助开发者更好地理解和优化Java应用的性能。 ####
15 0
|
7天前
|
存储 监控 算法
深入探索Java虚拟机(JVM)的内存管理机制
本文旨在为读者提供对Java虚拟机(JVM)内存管理机制的深入理解。通过详细解析JVM的内存结构、垃圾回收算法以及性能优化策略,本文不仅揭示了Java程序高效运行背后的原理,还为开发者提供了优化应用程序性能的实用技巧。不同于常规摘要仅概述文章大意,本文摘要将简要介绍JVM内存管理的关键点,为读者提供一个清晰的学习路线图。
|
8天前
|
缓存 监控 算法
Python内存管理:掌握对象的生命周期与垃圾回收机制####
本文深入探讨了Python中的内存管理机制,特别是对象的生命周期和垃圾回收过程。通过理解引用计数、标记-清除及分代收集等核心概念,帮助开发者优化程序性能,避免内存泄漏。 ####
20 3
|
9天前
|
存储 监控 算法
Java虚拟机(JVM)垃圾回收机制深度解析与优化策略####
本文旨在深入探讨Java虚拟机(JVM)的垃圾回收机制,揭示其工作原理、常见算法及参数调优方法。通过剖析垃圾回收的生命周期、内存区域划分以及GC日志分析,为开发者提供一套实用的JVM垃圾回收优化指南,助力提升Java应用的性能与稳定性。 ####
|
13天前
|
机器学习/深度学习 监控 算法
Java虚拟机(JVM)的垃圾回收机制深度剖析####
本文深入探讨Java虚拟机(JVM)的垃圾回收机制,揭示其工作原理、常见算法、性能调优策略及未来趋势。通过实例解析,为开发者提供优化Java应用性能的思路与方法。 ####
28 1
|
16天前
|
监控 算法 Java
Java虚拟机垃圾回收机制深度剖析与优化策略####
【10月更文挑战第21天】 本文旨在深入探讨Java虚拟机(JVM)中的垃圾回收机制,揭示其工作原理、常见算法及参数调优技巧。通过案例分析,展示如何根据应用特性调整GC策略,以提升Java应用的性能和稳定性,为开发者提供实战中的优化指南。 ####
33 5
|
14天前
|
算法 Java 开发者
Java内存管理与垃圾回收机制深度剖析####
本文深入探讨了Java虚拟机(JVM)的内存管理机制,特别是其垃圾回收机制的工作原理、算法及实践优化策略。不同于传统的摘要概述,本文将以一个虚拟的“城市环卫系统”为比喻,生动形象地揭示Java内存管理的奥秘,旨在帮助开发者更好地理解并调优Java应用的性能。 ####
|
16天前
|
Java
JVM内存参数
-Xmx[]:堆空间最大内存 -Xms[]:堆空间最小内存,一般设置成跟堆空间最大内存一样的 -Xmn[]:新生代的最大内存 -xx[use 垃圾回收器名称]:指定垃圾回收器 -xss:设置单个线程栈大小 一般设堆空间为最大可用物理地址的百分之80
|
16天前
|
存储 算法 Java
JVM进阶调优系列(10)敢向stop the world喊卡的G1垃圾回收器 | 有必要讲透
本文详细介绍了G1垃圾回收器的背景、核心原理及其回收过程。G1,即Garbage First,旨在通过将堆内存划分为多个Region来实现低延时的垃圾回收,每个Region可以根据其垃圾回收的价值被优先回收。文章还探讨了G1的Young GC、Mixed GC以及Full GC的具体流程,并列出了G1回收器的核心参数配置,帮助读者更好地理解和优化G1的使用。
|
6天前
|
存储 监控 算法
Java内存管理的艺术:深入理解垃圾回收机制####
本文将引领读者探索Java虚拟机(JVM)中垃圾回收的奥秘,解析其背后的算法原理,通过实例揭示调优策略,旨在提升Java开发者对内存管理能力的认知,优化应用程序性能。 ####
20 0