分布式学习六:三阶段提交(3PC)

简介: 分布式学习六:三阶段提交(3PC)

三阶段提交

3PC,是Three-Phase Commit的缩写,即三阶段提交,是2PC的改进版,其将二阶段提 交协议的“提交事务请求”过程一分为二,形成了由CanCommit, PreCommit和do Commit 三个阶段组成的事务处理协议.

阶段一:CanCommit


1:事务询问:协调者向所有的参与者发送一个包含事务内容的canCommit请求,询问是否可以执行事务提交操作,并开始等待各参与者的响应。

2:反馈响应:参与者在接收到来自协调者的canCommit请求后,正常情况下,如果其自身认为可以顺利执行事务,那么会反馈Yes响应,并进入预备状态,否则反馈No响应.

阶段二:PreCommit

协调者会根据阶段一的反馈决定是否进行事务的PreCommit操作,如果全部为Yes,则进入PreCommit,否则进入中断事务

1:发起预提交请求:协调者向所有参与者发送PreCommit请求,并进入Prepared阶段

2:事务预提交:参与者接收到PreCommit请求后,会执行事务操作,并记录undo和redo信息到日志中

3:参与者反馈:各个参与者反馈事务执行的响应,成功了则返回ACK,并且等待最终的指令:提交(commit)/回滚(rollback)

中断事务

假如参与者在上面步骤返回了No或者协调者等待所有参与者响应超时,则进入中断事务步骤

1:发送中断请求:协调者向所有参与者发送abort请求

2:中断事务:无论是接收到了abort请求,还是等待时接收超时,参与者都中断事务

注意,完成阶段二之后,如果参与者在一定时间没有收到阶段三消息,触发超时后会自动提交

阶段三:doCommit

1:发送提交请求:协调者在收到所有正常响应后,它将转换到"提交"状态,并向所有的参与者发送doCommit请求

2:事务提交:参与者在收到doCommit请求后,正式提交事务,并在完成之后释放事务所占用的资源

3:反馈事务结果:参与者提交事务后,向协调者发送ACK消息

4:完成事务:协调者接收到所有ACK消息后,完成事务

中断事务

假如协调者接收到了No响应或者长时间没有接收到所有参与者的响应,则进入中断事务状态

1:发起中断请求:协调者向所有参与者发送abort请求

2:事务回滚:参与者接收到abort请求后,会利用阶段二中记录的undo信息来回滚事务,回滚成功后释放事务占用的资源

3:反馈回滚结果:参与者向协调者发送ACK消息

4:中断事务:协调者接收到所有参与者反馈的ACK消息,中断事务成功

注意:一旦进入阶段三,可能会出现 2 种故障:

1:协调者出现问题

2:协调者和参与者之间的网络故障

一段出现了任一一种情况,最终都会导致参与者无法收到 doCommit 请求或者 abort 请求,针对这种情况,参与者都会在等待超时之后,继续进行事务提交。

优缺点

优点:相比较 2PC,最大的优点是减少了参与者的阻塞范围(第一个阶段是不阻塞的),并且能够在单点故障后继续达成一致(2PC 在提交阶段会出现此问题,而 3PC 会根据协调者的状态进行回滚或者提交)。

缺点:如果参与者收到了 preCommit 消息后,出现了网络分区,那么参与者等待超时后,都会进行事务的提交,这必然会出现事务不一致的问题。

相关实践学习
通过Ingress进行灰度发布
本场景您将运行一个简单的应用,部署一个新的应用用于新的发布,并通过Ingress能力实现灰度发布。
容器应用与集群管理
欢迎来到《容器应用与集群管理》课程,本课程是“云原生容器Clouder认证“系列中的第二阶段。课程将向您介绍与容器集群相关的概念和技术,这些概念和技术可以帮助您了解阿里云容器服务ACK/ACK Serverless的使用。同时,本课程也会向您介绍可以采取的工具、方法和可操作步骤,以帮助您了解如何基于容器服务ACK Serverless构建和管理企业级应用。 学习完本课程后,您将能够: 掌握容器集群、容器编排的基本概念 掌握Kubernetes的基础概念及核心思想 掌握阿里云容器服务ACK/ACK Serverless概念及使用方法 基于容器服务ACK Serverless搭建和管理企业级网站应用
目录
相关文章
|
10月前
|
消息中间件 关系型数据库 MySQL
分布式事物-全面详解(学习总结---从入门到深化)
分布式事物-全面详解(学习总结---从入门到深化)
1670 0
|
10月前
|
SQL 关系型数据库 数据库
学习分布式事务Seata看这一篇就够了,建议收藏
学习分布式事务Seata看这一篇就够了,建议收藏
|
10月前
|
消息中间件 Dubbo 应用服务中间件
分布式事物【Hmily实现TCC分布式事务、Hmily实现TCC事务、最终一致性分布式事务解决方案】(七)-全面详解(学习总结---从入门到深化)
分布式事物【Hmily实现TCC分布式事务、Hmily实现TCC事务、最终一致性分布式事务解决方案】(七)-全面详解(学习总结---从入门到深化)
240 0
|
2月前
|
消息中间件 算法 调度
分布式系统学习10:分布式事务
本文是小卷关于分布式系统架构学习系列的第13篇,重点探讨了分布式事务的相关知识。随着业务增长,单体架构拆分为微服务后,传统的本地事务无法满足需求,因此需要引入分布式事务来保证数据一致性。文中详细介绍了分布式事务的必要性、实现方案及其优缺点,包括刚性事务(如2PC、3PC)和柔性事务(如TCC、Saga、本地消息表、MQ事务、最大努力通知)。同时,还介绍了Seata框架作为开源的分布式事务解决方案,提供了多种事务模式,简化了分布式事务的实现。
89 5
|
2月前
|
NoSQL 关系型数据库 MySQL
分布式系统学习9:分布式锁
本文介绍了分布式系统中分布式锁的概念、实现方式及其应用场景。分布式锁用于在多个独立的JVM进程间确保资源的互斥访问,具备互斥、高可用、可重入和超时机制等特点。文章详细讲解了三种常见的分布式锁实现方式:基于Redis、Zookeeper和关系型数据库(如MySQL)。其中,Redis适合高性能场景,推荐使用Redisson库;Zookeeper适用于对一致性要求较高的场景,建议基于Curator框架实现;而基于数据库的方式性能较低,实际开发中较少使用。此外,还探讨了乐观锁和悲观锁的区别及适用场景,并介绍了如何通过Lua脚本和Redis的`SET`命令实现原子操作,以及Redisson的自动续期机
203 7
|
9月前
|
机器学习/深度学习 分布式计算 算法
联邦学习是保障数据隐私的分布式机器学习方法
【6月更文挑战第13天】联邦学习是保障数据隐私的分布式机器学习方法,它在不暴露数据的情况下,通过在各设备上本地训练并由中心服务器协调,实现全局模型构建。联邦学习的优势在于保护隐私、提高训练效率和增强模型泛化。已应用于医疗、金融和物联网等领域。未来趋势包括更高效的数据隐私保护、提升可解释性和可靠性,以及与其他技术融合,有望在更多场景发挥潜力,推动机器学习发展。
165 4
|
9月前
|
消息中间件 NoSQL Java
Redis系列学习文章分享---第六篇(Redis实战篇--Redis分布式锁+实现思路+误删问题+原子性+lua脚本+Redisson功能介绍+可重入锁+WatchDog机制+multiLock)
Redis系列学习文章分享---第六篇(Redis实战篇--Redis分布式锁+实现思路+误删问题+原子性+lua脚本+Redisson功能介绍+可重入锁+WatchDog机制+multiLock)
300 0
|
6月前
|
机器学习/深度学习 算法 自动驾驶
深度学习之分布式智能体学习
基于深度学习的分布式智能体学习是一种针对多智能体系统的机器学习方法,旨在通过多个智能体协作、分布式决策和学习来解决复杂任务。这种方法特别适用于具有大规模数据、分散计算资源、或需要智能体彼此交互的应用场景。
336 4
|
10月前
|
NoSQL 中间件 API
分布式锁【数据库乐观锁实现的分布式锁、Zookeeper分布式锁原理、Redis实现的分布式锁】(三)-全面详解(学习总结---从入门到深化)(下)
分布式锁【数据库乐观锁实现的分布式锁、Zookeeper分布式锁原理、Redis实现的分布式锁】(三)-全面详解(学习总结---从入门到深化)
268 2
|
10月前
|
Java 数据库连接 API
分布式事物【XA强一致性分布式事务实战、Seata提供XA模式实现分布式事务】(五)-全面详解(学习总结---从入门到深化)
分布式事物【XA强一致性分布式事务实战、Seata提供XA模式实现分布式事务】(五)-全面详解(学习总结---从入门到深化)
184 0

热门文章

最新文章