Java实现递归回溯,解决八皇后问题,数据结构与算法

简介: Java实现递归回溯,解决八皇后问题,数据结构与算法

文章目录


八皇后问题

解决思路

代码实现

运行结果


八皇后问题


八皇后问题,是一个古老而著名的问题,是回溯算法的典型案例。该问题是国际西洋棋棋手马克斯·贝瑟尔于1848年提出:在8X8格的国际象棋上摆放八个皇后,使其不能互相攻击,即:任意两个皇后都不能处于同一行、同一列或同一斜线上,问有多少种摆法。


解决思路


①第一个皇后先放第一行第一列。


②第二个皇后放在第二行第一列、然后判断是否OK,如果不0K, 继续放在第二列、第三列、依次把所有列都放完,找到一个合适。


③继续第三个皇后, 还是第一列、第二列…直到第8个皇后也能放在一个不冲突的位置,算是找到了一个正确解。


④当得到一个正确解时,在栈回退到上一个栈时,就会开始回溯,即将第一个皇后,放到第一列的所有正确解,全部得到。


⑤然后回头继续第-一个皇后放第二列,后面继续循环执行①②③④的步骤。


代码实现


/**
 * @Author: Yeman
 * @Date: 2021-10-31-15:48
 * @Description:
 */
public class Queue8 {
    int max = 8; //8个皇后
    int[] arr = new int[max]; //下标为第几个(即第几行),值为第几列
    static int count = 0; //多少个放法
    static int judgeCount = 0; //判断了多少次
    public static void main(String[] args) {
        Queue8 queue8 = new Queue8();
        queue8.check(0);
        System.out.printf("一共有%d种解法\n",count);
        System.out.printf("一共判断了%d次",judgeCount);
    }
    //用来放置第n个皇后
    private void check(int n){
        if (n == max){ //n为8相当于是第九个皇后了,说明已经全部放好了
            print();
            return;
        }
        for (int i = 0; i < arr.length; i++) {
            arr[n] = i;
            if (judge(n)){ //不冲突
                check(n+1);
            }
        }
    }
    //用来第n个皇后判断与前面的所有皇后是否冲突
    private boolean judge(int n){
        judgeCount++;
        for (int i = 0; i < n; i++) {
            //是否同列同斜线
            if (arr[i] == arr[n] || Math.abs(arr[i]-arr[n]) == Math.abs(i-n)){
                return false;
            }
        }
        return true;
    }
    //输出每一种放法
    private void print(){
        count++;
        for (int i = 0; i < arr.length; i++) {
            System.out.print(arr[i] + " ");
        }
        System.out.println();
    }
}


运行结果


(截取部分)


25c57d8e1be64052bd3cfac4b5544560.png



相关文章
|
3月前
|
机器学习/深度学习 算法 C++
【DFS/回溯算法】2016年蓝桥杯真题之路径之谜详解
题目要求根据城堡北墙和西墙箭靶上的箭数,推断骑士从西北角到东南角的唯一路径。每步移动时向正北和正西各射一箭,同一格不重复经过。通过DFS回溯模拟“拔箭”过程,验证路径合法性。已知箭数约束路径唯一,最终按编号输出行走顺序。
|
5月前
|
算法
回溯算法的基本思想
本节介绍回溯算法,通过图1中从A到K的路径查找示例,说明其与穷举法的异同。回溯算法通过“回退”机制高效试探各种路径,适用于决策、优化和枚举问题。
154 0
|
9月前
|
前端开发 Java
java实现队列数据结构代码详解
本文详细解析了Java中队列数据结构的实现,包括队列的基本概念、应用场景及代码实现。队列是一种遵循“先进先出”原则的线性结构,支持在队尾插入和队头删除操作。文章介绍了顺序队列与链式队列,并重点分析了循环队列的实现方式以解决溢出问题。通过具体代码示例(如`enqueue`入队和`dequeue`出队),展示了队列的操作逻辑,帮助读者深入理解其工作机制。
291 1
|
6月前
|
存储 缓存 算法
什么是回溯算法
回溯算法是一种通过尝试所有可能路径寻找问题解的策略,采用深度优先搜索与状态重置机制。它适用于组合、排列、棋盘等需枚举所有可能解的问题,核心思想包括DFS遍历、剪枝优化与状态恢复。尽管时间复杂度较高,但通过合理剪枝可显著提升效率,是解决复杂搜索问题的重要方法。
283 0
|
7月前
|
存储 安全 Java
Java 集合面试题从数据结构到 HashMap 源码剖析详解及长尾考点梳理
本文深入解析Java集合框架,涵盖基础概念、常见集合类型及HashMap的底层数据结构与源码实现。从Collection、Map到Iterator接口,逐一剖析其特性与应用场景。重点解读HashMap在JDK1.7与1.8中的数据结构演变,包括数组+链表+红黑树优化,以及put方法和扩容机制的实现细节。结合订单管理与用户权限管理等实际案例,展示集合框架的应用价值,助你全面掌握相关知识,轻松应对面试与开发需求。
365 3
|
10月前
|
算法 Java
算法系列之回溯算法求解数独及所有可能解
数独求解的核心算法是回溯算法。回溯算法是一种通过逐步构建解决方案并在遇到冲突时回退的算法。具体来说,我们尝试在空格中填入一个数字,然后递归地继续填充下一个空格。如果在某个步骤中发现无法继续填充,则回退到上一步并尝试其他数字。
495 11
算法系列之回溯算法求解数独及所有可能解
|
9月前
|
存储 Java 编译器
Java 中 .length 的使用方法:深入理解 Java 数据结构中的长度获取机制
本文深入解析了 Java 中 `.length` 的使用方法及其在不同数据结构中的应用。对于数组,通过 `.length` 属性获取元素数量;字符串则使用 `.length()` 方法计算字符数;集合类如 `ArrayList` 采用 `.size()` 方法统计元素个数。此外,基本数据类型和包装类不支持长度属性。掌握这些区别,有助于开发者避免常见错误,提升代码质量。
892 1
|
11月前
|
存储 算法 Java
算法系列之递归反转单链表
递归反转链表的基本思路是将当前节点的next指针指向前一个节点,然后递归地对下一个节点进行同样的操作。递归的核心思想是将问题分解为更小的子问题,直到达到基本情况(通常是链表末尾)。
358 5
算法系列之递归反转单链表
|
11月前
|
算法 Java
算法系列之回溯算法
回溯算法(Backtracking Algorithm)是一种通过穷举来解决问题的方法,它的核心思想是从一个初始状态出发,暴力搜索所有可能的解决方案,遇到正确解将其记录,直到找到了所有的解或者尝试了所有的可能为止。
394 4
算法系列之回溯算法
|
存储 缓存 安全
Java 集合江湖:底层数据结构的大揭秘!
小米是一位热爱技术分享的程序员,本文详细解析了Java面试中常见的List、Set、Map的区别。不仅介绍了它们的基本特性和实现类,还深入探讨了各自的使用场景和面试技巧,帮助读者更好地理解和应对相关问题。
216 5