67. 谈谈ConcurrentHashMap是如何保证线程安全的?

简介: 67. 谈谈ConcurrentHashMap是如何保证线程安全的?

67. 谈谈ConcurrentHashMap是如何保证线程安全的?


我们知道,ConcurrentHashmap(1.8)这个并发集合框架是线程安全的,当你看到源码的get操作时,会发现get操作全程是没有加任何锁的,这也是这篇博文讨论的问题——为什么它不需要加锁呢?

ConcurrentHashMap的简介

我想有基础的同学知道在jdk1.7中是采用Segment + HashEntry + ReentrantLock的方式进行实现的,而1.8中放弃了Segment臃肿的设计,取而代之的是采用Node + CAS + Synchronized来保证并发安全进行实现。

JDK1.8的实现降低锁的粒度,JDK1.7版本锁的粒度是基于Segment的,包含多个HashEntry,而JDK1.8锁的粒度就是HashEntry(首节点)

JDK1.8版本的数据结构变得更加简单,使得操作也更加清晰流畅,因为已经使用synchronized来进行同步,所以不需要分段锁的概念,也就不需要Segment这种数据结构了,由于粒度的降低,实现的复杂度也增加了

JDK1.8使用红黑树来优化链表,基于长度很长的链表的遍历是一个很漫长的过程,而红黑树的遍历效率是很快的,代替一定阈值的链表,这样形成一个最佳拍档

get操作源码

  • 首先计算hash值,定位到该table索引位置,如果是首节点符合就返回
  • 如果遇到扩容的时候,会调用标志正在扩容节点ForwardingNode的find方法,查找该节点,匹配就返回
  • 以上都不符合的话,就往下遍历节点,匹配就返回,否则最后就返回null
//会发现源码中没有一处加了锁
public V get(Object key) {
    Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
    int h = spread(key.hashCode()); //计算hash
    if ((tab = table) != null && (n = tab.length) > 0 &&
      (e = tabAt(tab, (n - 1) & h)) != null) {//读取首节点的Node元素
        if ((eh = e.hash) == h) { //如果该节点就是首节点就返回
            if ((ek = e.key) == key || (ek != null && key.equals(ek)))
                return e.val;
        }
        //hash值为负值表示正在扩容,这个时候查的是ForwardingNode的find方法来定位到nextTable来
        //eh=-1,说明该节点是一个ForwardingNode,正在迁移,此时调用ForwardingNode的find方法去nextTable里找。
        //eh=-2,说明该节点是一个TreeBin,此时调用TreeBin的find方法遍历红黑树,由于红黑树有可能正在旋转变色,所以find里会有读写锁。
        //eh>=0,说明该节点下挂的是一个链表,直接遍历该链表即可。
        else if (eh < 0)
            return (p = e.find(h, key)) != null ? p.val : null;
        while ((e = e.next) != null) {//既不是首节点也不是ForwardingNode,那就往下遍历
            if (e.hash == h &&
             ((ek = e.key) == key || (ek != null && key.equals(ek))))
                 return e.val;
        }
    }
    return null;
}

get没有加锁的话,ConcurrentHashMap是如何保证读到的数据不是脏数据的呢?

volatile登场

对于可见性,Java提供了volatile关键字来保证可见性、有序性。但不保证原子性。

普通的共享变量不能保证可见性,因为普通共享变量被修改之后,什么时候被写入主存是不确定的,当其他线程去读取时,此时内存中可能还是原来的旧值,因此无法保证可见性。

volatile关键字对于基本类型的修改可以在随后对多个线程的读保持一致,但是对于引用类型如数组,实体bean,仅仅保证引用的可见性,但并不保证引用内容的可见性。。

禁止进行指令重排序。

背景:为了提高处理速度,处理器不直接和内存进行通信,而是先将系统内存的数据读到内部缓存(L1,L2或其他)后再进行操作,但操作完不知道何时会写到内存。

如果对声明了volatile的变量进行写操作,JVM就会向处理器发送一条指令,将这个变量所在缓存行的数据写回到系统内存。但是,就算写回到内存,如果其他处理器缓存的值还是旧的,再执行计算操作就会有问题。

在多处理器下,为了保证各个处理器的缓存是一致的,就会实现缓存一致性协议,当某个CPU在写数据时,如果发现操作的变量是共享变量,则会通知其他CPU告知该变量的缓存行是无效的,因此其他CPU在读取该变量时,发现其无效会重新从主存中加载数据。

总结下来:

第一:使用volatile关键字会强制将修改的值立即写入主存;

第二:使用volatile关键字的话,当线程2进行修改时,会导致线程1的工作内存中缓存变量的缓存行无效(反映到硬件层的话,就是CPU的L1或者L2缓存中对应的缓存行无效);

第三:由于线程1的工作内存中缓存变量的缓存行无效,所以线程1再次读取变量的值时会去主存读取。

是加在数组上的volatile吗?

/**
 * The array of bins. Lazily initialized upon first insertion.
 * Size is always a power of two. Accessed directly by iterators.
 */
transient volatile Node<K,V>[] table;

我们知道volatile可以修饰数组的,只是意思和它表面上看起来的样子不同。举个栗子,volatile int array[10]是指array的地址是volatile的而不是数组元素的值是volatile的.

用volatile修饰的Node

get操作可以无锁是由于Node的元素val和指针next是用volatile修饰的,在多线程环境下线程A修改结点的val或者新增节点的时候是对线程B可见的。

static class Node<K,V> implements Map.Entry<K,V> {
    final int hash;
    final K key;
    //可以看到这些都用了volatile修饰
    volatile V val;
    volatile Node<K,V> next;
    Node(int hash, K key, V val, Node<K,V> next) {
        this.hash = hash;
        this.key = key;
        this.val = val;
        this.next = next;
    }
    public final K getKey() { return key; }
    public final V getValue() { return val; }
    public final int hashCode() { return key.hashCode() ^ val.hashCode(); }
    public final String toString(){ return key + "=" + val; }
    public final V setValue(V value) {
        throw new UnsupportedOperationException();
    }
    public final boolean equals(Object o) {
        Object k, v, u; Map.Entry<?,?> e;
        return ((o instanceof Map.Entry) &&
          (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
          (v = e.getValue()) != null &&
          (k == key || k.equals(key)) &&
          (v == (u = val) || v.equals(u))); 
    }
    /**
    * Virtualized support for map.get(); overridden in subclasses.
    */
    Node<K,V> find(int h, Object k) {
        Node<K,V> e = this;
        if (k != null) {
            do {
                K ek;
                if (e.hash == h &&
                 ((ek = e.key) == k || (ek != null && k.equals(ek))))
                   return e;
            } while ((e = e.next) != null);
        }
        return null;
    }
}

既然volatile修饰数组对get操作没有效果那加在数组上的volatile的目的是什么呢?

其实就是为了使得Node数组在扩容的时候对其他线程具有可见性而加的volatile

总结

在1.8中ConcurrentHashMap的get操作全程不需要加锁,这也是它比其他并发集合比如hashtable、用Collections.synchronizedMap()包装的hashmap;安全效率高的原因之一。

get操作全程不需要加锁是因为Node的成员val是用volatile修饰的和数组用volatile修饰没有关系。

数组用volatile修饰主要是保证在数组扩容的时候保证可见性。

ble、用Collections.synchronizedMap()包装的hashmap;安全效率高的原因之一。

get操作全程不需要加锁是因为Node的成员val是用volatile修饰的和数组用volatile修饰没有关系。

数组用volatile修饰主要是保证在数组扩容的时候保证可见性。

目录
相关文章
|
4月前
|
缓存 安全 算法
Java面试题:如何通过JVM参数调整GC行为以优化应用性能?如何使用synchronized和volatile关键字解决并发问题?如何使用ConcurrentHashMap实现线程安全的缓存?
Java面试题:如何通过JVM参数调整GC行为以优化应用性能?如何使用synchronized和volatile关键字解决并发问题?如何使用ConcurrentHashMap实现线程安全的缓存?
41 0
|
3月前
|
存储 Java 开发者
HashMap线程安全问题大揭秘:ConcurrentHashMap、自定义同步,一文让你彻底解锁!
【8月更文挑战第24天】HashMap是Java集合框架中不可或缺的一部分,以其高效的键值对存储和快速访问能力广受开发者欢迎。本文深入探讨了HashMap在JDK 1.8后的底层结构——数组+链表+红黑树混合模式,这种设计既利用了数组的快速定位优势,又通过链表和红黑树有效解决了哈希冲突问题。数组作为基石,每个元素包含一个Node节点,通过next指针形成链表;当链表长度过长时,采用红黑树进行优化,显著提升性能。此外,还介绍了HashMap的扩容机制,确保即使在数据量增大时也能保持高效运作。通过示例代码展示如何使用HashMap进行基本操作,帮助理解其实现原理及应用场景。
51 1
|
4月前
|
安全 Java
ConcurrentHashMap是如何保证线程安全的
总的来说,ConcurrentHashMap通过分段锁和红黑树等策略,实现了既能保证线程安全,又能保持高并发性能的特性。
44 1
|
4月前
|
安全 Java
多线程线程安全问题之避免ThreadLocal的内存泄漏,如何解决
多线程线程安全问题之避免ThreadLocal的内存泄漏,如何解决
|
4月前
|
存储 安全 Java
Java面试题:请解释Java内存模型,并说明如何在多线程环境下使用synchronized关键字实现同步,阐述ConcurrentHashMap与HashMap的区别,以及它如何在并发环境中提高性能
Java面试题:请解释Java内存模型,并说明如何在多线程环境下使用synchronized关键字实现同步,阐述ConcurrentHashMap与HashMap的区别,以及它如何在并发环境中提高性能
36 0
|
6月前
|
编解码 安全 算法
Java多线程基础-18:线程安全的集合类与ConcurrentHashMap
如果这些单线程中的集合类确实需要在多线程中使用,该怎么办呢?思路有两个: 最直接的方式:使用锁,手动保证。如多个线程修改ArrayList对象,此时就可能有问题,就可以给修改操作进行加锁。但手动加锁的方式并不是很方便,因此标准库还提供了一些线程安全的集合类。
95 4
|
6月前
|
安全 Java 调度
HashMap很美好,但线程不安全怎么办?ConcurrentHashMap告诉你答案!
HashMap很美好,但线程不安全怎么办?ConcurrentHashMap告诉你答案!
95 1
|
6月前
|
存储 安全 Java
【亮剑】`ConcurrentHashMap`是Java中线程安全的哈希表,采用锁定分离技术提高并发性能
【4月更文挑战第30天】`ConcurrentHashMap`是Java中线程安全的哈希表,采用锁定分离技术提高并发性能。数据被分割成多个Segment,每个拥有独立锁,允许多线程并发访问不同Segment。当写操作发生时,计算键的哈希值定位Segment并获取其锁;读操作通常无需锁定。内部会根据负载动态调整Segment,减少锁竞争。虽然使用不公平锁,但Java 8及以上版本提供了公平锁选项。理解其工作原理对开发高性能并发应用至关重要。
55 0
|
存储 安全 Java
ConcurrentHashMap是如何保证线程安全的?
ConcurrentHashMap相当于是HashMap的多线程版本,它的功能本质上和HashMap没什么区别。因为HashMap在并发操作的时候会出现各种问题,比如死循环问题、数据覆盖等问题。而这些问题,只要使用ConcurrentHashMap就可以完美地解决。那问题来到了,ConcurrentHashMap它是如何保证线程安全的呢?
112 0
|
6月前
|
存储 缓存 安全
Java ConcurrentHashMap:线程安全的哈希表实现
Java ConcurrentHashMap:线程安全的哈希表实现
161 0