消息队列(三)

简介: 消息队列(三)

RabbitMQ持久化


概念


刚刚我们已经看到了如何处理任务不丢失的情况,但是如何保障当 RabbitMQ 服务停掉以后消息生产者发送过来的消息不丢失。默认情况下 RabbitMQ 退出或由于某种原因崩溃时,它忽视队列和消息,除非告知它不要这样做。确保消息不会丢失需要做两件事:我们需要将队列和消息都标记为持久化。


队列持久化


之前我们创建的队列都是非持久化的,rabbitmq 如果重启,该队列就会被删除掉,如果要队列实现持久化 需要在声明队列的时候把 durable 参数设置为持久化


//声明队列
boolean durable = true;//需要让队列Queue进行持久化
channel.queueDeclare(TASK_QUEUE_NAME, durable, false, false, null);


但是需要注意的就是如果之前声明的队列不是持久化的,需要把原先队列先删除,或者重新创建一个持久化的队列,不然就会出现错误


image.png


以下为控制台中持久化与非持久化队列的UI展示区


image.png


这个时候即使重启 rabbitmq 队列也依然存在


消息持久化


要想让消息实现持久化需要在消息生产者修改代码,MessageProperties.PERSISTENT_TEXT_PLAIN 添加这个属性。


channel.basicPublish("", TASK_QUEUE_NAME, null message.getBytes("UTF-8"));
//消息持久化,修改参数
channel.basicPublish("", TASK_QUEUE_NAME, MessageProperties.PERSISTENT_TEXT_PLAIN, message.getBytes("UTF-8"));


将消息标记为持久化并不能完全保证不会丢失消息。尽管它告诉 RabbitMQ 将消息保存到磁盘,但是这里依然存在当消息刚准备存储在磁盘的时候 但是还没有存储完,消息还在缓存的一个间隔点。此时并没有真正写入磁盘。持久性保证并不强,但是对于我们的简单任务队列而言,这已经绰绰有余了。如果需要更强有力的持久化策略,参考后边的发布确认章节。


不公平分发


在最开始的时候我们学习到 RabbitMQ 分发消息采用的轮训分发,但是在某种场景下这种策略并不是很好,比方说有两个消费者在处理任务,其中有个消费者 1 处理任务的速度非常快,而另外一个消费者 2处理速度却很慢,这个时候我们还是采用轮训分发的化就会到这处理速度快的这个消费者很大一部分时间处于空闲状态,而处理慢的那个消费者一直在干活,这种分配方式在这种情况下其实就不太好,但是RabbitMQ 并不知道这种情况它依然很公平的进行分发。


为了避免这种情况,我们可以设置参数 channel.basicQos(1);


int perfetchCount = 1;
channel.basicQos(perfetchCount);

意思就是如果这个任务我还没有处理完或者我还没有应答你,你先别分配给我,我目前只能处理一个任务,然后 rabbitmq 就会把该任务分配给没有那么忙的那个空闲消费者,当然如果所有的消费者都没有完成手上任务,队列还在不停的添加新任务,队列有可能就会遇到队列被撑满的情况,这个时候就只能添加新的 worker 或者改变其他存储任务的策略。


image.pngimage.png


预取值


本身消息的发送就是异步发送的,所以在任何时候,channel 上肯定不止只有一个消息另外来自消费者的手动确认本质上也是异步的。因此这里就存在一个未确认的消息缓冲区,因此希望开发人员能限制此缓冲区的大小,以避免缓冲区里面无限制的未确认消息问题。这个时候就可以通过使用 basic.qos 方法设置“预取计数”值来完成的。该值定义通道上允许的未确认消息的最大数量。一旦数量达到配置的数量,RabbitMQ 将停止在通道上传递更多消息,除非至少有一个未处理的消息被确认,例如,假设在通道上有未确认的消息 5、6、7,8,并且通道的预取计数设置为 4,此时RabbitMQ 将不会在该通道上再传递任何消息,除非至少有一个未应答的消息被 ack。比方说 tag=6 这个消息刚刚被确认 ACK,RabbitMQ 将会感知这个情况到并再发送一条消息。消息应答和 QoS 预取值对用户吞吐量有重大影响。通常,增加预取将提高向消费者传递消息的速度。虽然自动应答传输消息速率是最佳的,但是,在这种情况下已传递但尚未处理的消息的数量也会增加,从而增加了消费者的 RAM消耗(随机存取存储器)应该小心使用具有无限预处理的自动确认模式或手动确认模式,消费者消费了大量的消息如果没有确认的话,会导致消费者连接节点的内存消耗变大,所以找到合适的预取值是一个反复试验的过程,不同的负载该值取值也不同 100 到 300 范围内的值通常可提供最佳的吞吐量,并且不会给消费者带来太大的风险。预取值为 1 是最保守的。当然这将使吞吐量变得很低,特别是消费者连接延迟很严重的情况下,特别是在消费者连接等待时间较长的环境中。对于大多数应用来说,稍微高一点的值将是最佳的。


int perfetchCount = 2;
channel.basicQos(perfetchCount);


image.png


发布确认


确认发布原理


生产者将信道设置成 confirm 模式,一旦信道进入 confirm 模式,所有在该信道上面发布的消息都将会被指派一个唯一的 ID(从 1 开始),一旦消息被投递到所有匹配的队列之后,broker 就会发送一个确认给生产者(包含消息的唯一 ID),这就使得生产者知道消息已经正确到达目的队列了,如果消息和队列是可持久化的,那么确认消息会在将消息写入磁盘之后发出,broker 回传给生产者的确认消息中 delivery-tag 域包含了确认消息的序列号,此外 broker 也可以设置basic.ack 的multiple 域,表示到这个序列号之前的所有消息都已经得到了处理。


confirm 模式最大的好处在于他是异步的,一旦发布一条消息,生产者应用程序就可以在等信道返回确认的同时继续发送下一条消息,当消息最终得到确认之后,生产者应用便可以通过回调方法来处理该确认消息,如果 RabbitMQ 因为自身内部错误导致消息丢失,就会发送一条 nack 消息,生产者应用程序同样可以在回调方法中处理该 nack 消息。

相关实践学习
消息队列RocketMQ版:基础消息收发功能体验
本实验场景介绍消息队列RocketMQ版的基础消息收发功能,涵盖实例创建、Topic、Group资源创建以及消息收发体验等基础功能模块。
消息队列 MNS 入门课程
1、消息队列MNS简介 本节课介绍消息队列的MNS的基础概念 2、消息队列MNS特性 本节课介绍消息队列的MNS的主要特性 3、MNS的最佳实践及场景应用 本节课介绍消息队列的MNS的最佳实践及场景应用案例 4、手把手系列:消息队列MNS实操讲 本节课介绍消息队列的MNS的实际操作演示 5、动手实验:基于MNS,0基础轻松构建 Web Client 本节课带您一起基于MNS,0基础轻松构建 Web Client
目录
相关文章
|
6月前
|
消息中间件 大数据 Java
什么是消息队列
什么是消息队列
75 0
|
消息中间件 负载均衡 Java
什么是优秀的消息队列
简述消息队列,优秀的消息队列的特质及RoketMQ
|
消息中间件 数据库
|
消息中间件 存储 缓存
消息队列(六)
消息队列(六)
241 0
消息队列(六)
|
消息中间件 存储 中间件
消息队列(四)
消息队列(四)
202 0
消息队列(四)
|
消息中间件 网络协议
消息队列(二)
消息队列(二)
149 0
消息队列(二)
|
消息中间件 存储 网络协议
消息队列(一)
消息队列(一)
179 0
消息队列(一)
|
消息中间件 Java 数据库
消息队列(五)
消息队列(五)
164 0
消息队列(五)
|
消息中间件 SQL 关系型数据库
消息队列
消息队列
233 0
|
消息中间件 存储 数据库