threading库:Python线程锁与释放锁(二)

简介: threading库:Python线程锁与释放锁(二)

同步线程


Condition

在实际的操作中,我们还可以使用Condition对象来同步线程。由于Condition使用了一个Lock,所以它可以绑定到一个共享资源,允许多个线程等待资源的更新。


示例如下:

import threading
import time
def consumer(cond):
    print("waitCon")
    with cond:
        cond.wait()
        print('获取更新的资源')
def producer(cond):
    print("worker")
    with cond:
        print('更新资源')
        cond.notifyAll()
cond = threading.Condition()
t1 = threading.Thread(name='t1', target=consumer, args=(cond,))
t2 = threading.Thread(name='t2', target=consumer, args=(cond,))
t3 = threading.Thread(name='t3', target=producer, args=(cond,))
t1.start()
time.sleep(0.2)
t2.start()
time.sleep(0.2)
t3.start()


运行之后,效果如下:


这里,我们通过producer线程处理完成之后调用notifyAll(),consumer等线程等到了它的更新,可以类比为观察者模式。这里是,当一个线程用完资源之后时,则会自动通知依赖它的所有线程。


屏障(barrier)

屏障是另一种线程的同步机制。barrier会建立一个控制点,所有参与的线程会在这里阻塞,直到所有这些参与方都到达这一点。采用这种方法,线程可以单独启动然后暂停,直到所有线程都准备好了才可以继续。


示例如下:

import threading
import time
def worker(barrier):
    print(threading.current_thread().getName(), "worker")
    worker_id = barrier.wait()
    print(threading.current_thread().getName(), worker_id)
threads = []
barrier = threading.Barrier(3)
for i in range(3):
    threads.append(
        threading.Thread(
            name="t" + str(i),
            target=worker,
            args=(barrier,)
        )
    )
for t in threads:
    print(t.name, 'starting')
    t.start()
    time.sleep(0.1)
for t in threads:
    t.join()


运行之后,效果如下:


从控制台的输出会发发现,barrier.wait()会阻塞线程,直到所有线程被创建后,才同时释放越过这个控制点继续执行。wait()的返回值指示了释放的参与线程数,可以用来限制一些线程做清理资源等动作。


当然屏障Barrier还有一个abort()方法,该方法可以使所有等待线程接收一个BroKenBarrierError。如果线程在wait()上被阻塞而停止处理,会产生这个异常,通过except可以完成清理工作。


有限资源的并发访问


除了多线程可能访问同一个资源之外,有时候为了性能,我们也会限制多线程访问同一个资源的数量。例如,线程池支持同时连接,但数据可能是固定的,或者一个网络APP提供的并发下载数支持固定数目。这些连接就可以使用Semaphore来管理。


示例如下:

import threading
import time
class WorkerThread(threading.Thread):
    def __init__(self):
        super(WorkerThread, self).__init__()
        self.lock = threading.Lock()
        self.value = 0
    def increment(self):
        with self.lock:
            self.value += 1
            print(self.value)
def worker(s, pool):
    with s:
        print(threading.current_thread().getName())
        pool.increment()
        time.sleep(1)
        pool.increment()
pool = WorkerThread()
s = threading.Semaphore(2)
for i in range(5):
    t = threading.Thread(
        name="t" + str(i),
        target=worker,
        args=(s, pool,)
    )
    t.start()


运行之后,效果如下:


从图片虽然能看所有输出,但无法看到其停顿的事件。读者自己运行会发现,每次顶多只有两个线程在工作,是因为我们设置了threading.Semaphore(2)。


隐藏资源


在实际的项目中,有些资源需要锁定以便于多个线程使用,而另外一些资源则需要保护,以使它们对并非使这些资源的所有者的线程隐藏。


local()函数会创建一个对象,它能够隐藏值,使其在不同的线程中无法被看到。示例如下:

import threading
import random
def show_data(data):
    try:
        result = data.value
    except AttributeError:
        print(threading.current_thread().getName(), "No value")
    else:
        print(threading.current_thread().getName(), "value=", result)
def worker(data):
    show_data(data)
    data.value = random.randint(1, 100)
    show_data(data)
local_data = threading.local()
show_data(local_data)
local_data.value = 1000
show_data(local_data)
for i in range(2):
    t = threading.Thread(
        name="t" + str(i),
        target=worker,
        args=(local_data,)
    )
    t.start()


运行之后,效果如下:


这里local_data.value对所有线程都不可见,除非在某个线程中设置了这个属性,这个线程才能看到它。

相关文章
|
8天前
|
数据采集 Java API
Jsoup库能处理多线程下载吗?
Jsoup库能处理多线程下载吗?
|
15天前
|
机器学习/深度学习 算法 数据挖掘
数据分析的 10 个最佳 Python 库
数据分析的 10 个最佳 Python 库
48 4
数据分析的 10 个最佳 Python 库
|
2天前
|
XML JSON 数据库
Python的标准库
Python的标准库
24 11
|
15天前
|
人工智能 API 开发工具
aisuite:吴恩达发布开源Python库,一个接口调用多个大模型
吴恩达发布的开源Python库aisuite,提供了一个统一的接口来调用多个大型语言模型(LLM)服务。支持包括OpenAI、Anthropic、Azure等在内的11个模型平台,简化了多模型管理和测试的工作,促进了人工智能技术的应用和发展。
65 1
aisuite:吴恩达发布开源Python库,一个接口调用多个大模型
|
2天前
|
数据可视化 Python
以下是一些常用的图表类型及其Python代码示例,使用Matplotlib和Seaborn库。
通过这些思维导图和分析说明表,您可以更直观地理解和选择适合的数据可视化图表类型,帮助更有效地展示和分析数据。
27 8
|
9天前
|
安全 API 文件存储
Yagmail邮件发送库:如何用Python实现自动化邮件营销?
本文详细介绍了如何使用Yagmail库实现自动化邮件营销。Yagmail是一个简洁强大的Python库,能简化邮件发送流程,支持文本、HTML邮件及附件发送,适用于数字营销场景。文章涵盖了Yagmail的基本使用、高级功能、案例分析及最佳实践,帮助读者轻松上手。
20 4
|
16天前
|
数据采集 存储 数据处理
Python中的多线程编程及其在数据处理中的应用
本文深入探讨了Python中多线程编程的概念、原理和实现方法,并详细介绍了其在数据处理领域的应用。通过对比单线程与多线程的性能差异,展示了多线程编程在提升程序运行效率方面的显著优势。文章还提供了实际案例,帮助读者更好地理解和掌握多线程编程技术。
|
18天前
|
测试技术 Python
Python中的异步编程与`asyncio`库
Python中的异步编程与`asyncio`库
|
27天前
|
并行计算 数据处理 调度
Python中的并发编程:探索多线程与多进程的奥秘####
本文深入探讨了Python中并发编程的两种主要方式——多线程与多进程,通过对比分析它们的工作原理、适用场景及性能差异,揭示了在不同应用需求下如何合理选择并发模型。文章首先简述了并发编程的基本概念,随后详细阐述了Python中多线程与多进程的实现机制,包括GIL(全局解释器锁)对多线程的影响以及多进程的独立内存空间特性。最后,通过实例演示了如何在Python项目中有效利用多线程和多进程提升程序性能。 ####
|
21天前
|
监控 JavaScript 前端开发
python中的线程和进程(一文带你了解)
欢迎来到瑞雨溪的博客,这里是一位热爱JavaScript和Vue的大一学生分享技术心得的地方。如果你从我的文章中有所收获,欢迎关注我,我将持续更新更多优质内容,你的支持是我前进的动力!🎉🎉🎉
19 0