实现人脸磨皮算法---OpenCV-Python开发指南(58)

本文涉及的产品
视觉智能开放平台,分割抠图1万点
视觉智能开放平台,图像资源包5000点
视觉智能开放平台,视频资源包5000点
简介: 实现人脸磨皮算法---OpenCV-Python开发指南(58)

人脸磨皮原理


人脸磨皮是最基础的人脸美颜效果。主要分为祛斑,祛痘,淡化黑眼圈等步骤。通过前面的学习相信大家一眼都看得出来我们需要干什么才能识别人脸磨皮效果。


因为磨皮之后,脸部的杂质基本上就没有了,也可以说丢失了细节。那么肯定需要用到滤波函数。滤波的过程就是把图像的每一个像素值输入过滤器,得到平滑的图像。


而我们常用的滤波有均值滤波,高斯滤波以及双边滤波三种,到底选用那种滤波呢?


首先,均值滤波会因为是用周围像素的平均值代替原像素值,肯定会导致图像过于模糊,所以排除掉。其次,高斯滤波与均值滤波原理类似,只是高斯滤波器的模板系数会随着距离模板中心的增大而减小,虽然可以减弱图像的模糊程度,但是图像边缘信息会丢失。


那么,只剩一个滤波了,也就是双边滤波器。因为它同时综合了高通滤波器和a-截尾均值过滤器的叠加效果,即可以保证图像不是非常模糊,也可以保留图像边缘信息。


而人脸磨皮原理的步骤分为如下3个步骤:


图像滤波

图像融合

图像锐化


因为,不管上面3种滤波如何,都会导致一定的模糊(只是相对来说谁更优而已),所以需要对图像进行融合与锐化的操作。这样,可以保留一些图像的细节,以增强图像的真实感。


其中,图像融合使用的函数就是cv2.addWeighted()图像加权函数。融合的是原图与双通滤波后的图像。


最后,图像锐化使用的PIL库进行操作,使用它的ImageEnhance.Sharpness()函数自动调节图像的锐度与对比度。


实现人脸磨皮效果


既然我们已经完全掌握了人脸磨皮的原理。下面,我们来直接实现人脸的磨皮效果,具体的代码如下所示:

# 人脸磨皮
def facial_dermabrasion_effect(fileName):
    img = cv2.imread(fileName)
    blur_img = cv2.bilateralFilter(img, 31, 75, 75)
    #图像融合
    result_img = cv2.addWeighted(img, 0.3, blur_img, 0.7, 0)
    cv2.imwrite("58_1.jpg", result_img)
    image = Image.open("58_1.jpg")
    # 锐度调节
    enh_img = ImageEnhance.Sharpness(image)
    image_sharped = enh_img.enhance(1.5)
    # 对比度调节
    con_img = ImageEnhance.Contrast(image_sharped)
    image_con = con_img.enhance(1.15)
    image_con.save("58_2.jpg")
    img1 = cv2.imread("58.jpg")
    img2 = cv2.imread("58_2.jpg")
    cv2.imshow("1", img1)
    cv2.imshow("2", img2)
    cv2.waitKey()
    cv2.destroyAllWindows()
if __name__ == "__main__":
    facial_dermabrasion_effect("58.jpg")


运行之后,效果如下:


这段代码的参数都是可以调整的,并不是一层不变的,感兴趣的读者可以自己调节参数试试效果,当然人脸磨皮只是看起来皮肤光滑了。下面结合美白的效果,就可以实现相机的那种美颜。

目录
打赏
0
0
0
0
20
分享
相关文章
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
眼疾识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了4种常见的眼疾图像数据集(白内障、糖尿病性视网膜病变、青光眼和正常眼睛) 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张眼疾图片识别其名称。
194 5
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
从集思录可转债数据探秘:Python与C++实现的移动平均算法应用
本文探讨了如何利用移动平均算法分析集思录提供的可转债数据,帮助投资者把握价格趋势。通过Python和C++两种编程语言实现简单移动平均(SMA),展示了数据处理的具体方法。Python代码借助`pandas`库轻松计算5日SMA,而C++代码则通过高效的数据处理展示了SMA的计算过程。集思录平台提供了详尽且及时的可转债数据,助力投资者结合算法与社区讨论,做出更明智的投资决策。掌握这些工具和技术,有助于在复杂多变的金融市场中挖掘更多价值。
47 12
基于 Python 的布隆过滤器算法在内网行为管理中的应用探究
在复杂多变的网络环境中,内网行为管理至关重要。本文介绍布隆过滤器(Bloom Filter),一种高效的空间节省型概率数据结构,用于判断元素是否存在于集合中。通过多个哈希函数映射到位数组,实现快速访问控制。Python代码示例展示了如何构建和使用布隆过滤器,有效提升企业内网安全性和资源管理效率。
48 9
局域网屏幕监控系统中的Python数据结构与算法实现
局域网屏幕监控系统用于实时捕获和监控局域网内多台设备的屏幕内容。本文介绍了一种基于Python双端队列(Deque)实现的滑动窗口数据缓存机制,以处理连续的屏幕帧数据流。通过固定长度的窗口,高效增删数据,确保低延迟显示和存储。该算法适用于数据压缩、异常检测等场景,保证系统在高负载下稳定运行。 本文转载自:https://www.vipshare.com
139 66
|
26天前
|
内网桌面监控软件深度解析:基于 Python 实现的 K-Means 算法研究
内网桌面监控软件通过实时监测员工操作,保障企业信息安全并提升效率。本文深入探讨K-Means聚类算法在该软件中的应用,解析其原理与实现。K-Means通过迭代更新簇中心,将数据划分为K个簇类,适用于行为分析、异常检测、资源优化及安全威胁识别等场景。文中提供了Python代码示例,展示如何实现K-Means算法,并模拟内网监控数据进行聚类分析。
38 10
控制局域网上网软件之 Python 字典树算法解析
控制局域网上网软件在现代网络管理中至关重要,用于控制设备的上网行为和访问权限。本文聚焦于字典树(Trie Tree)算法的应用,详细阐述其原理、优势及实现。通过字典树,软件能高效进行关键词匹配和过滤,提升系统性能。文中还提供了Python代码示例,展示了字典树在网址过滤和关键词屏蔽中的具体应用,为局域网的安全和管理提供有力支持。
59 17
解锁文档管理系统高效检索奥秘:Python 哈希表算法探究
在数字化时代,文档管理系统犹如知识宝库,支撑各行各业高效运转。哈希表作为核心数据结构,通过哈希函数将数据映射为固定长度的哈希值,实现快速查找与定位。本文聚焦哈希表在文档管理中的应用,以Python代码示例展示其高效检索特性,并探讨哈希冲突解决策略,助力构建智能化文档管理系统。
探秘Win11共享文件夹之Python网络通信算法实现
本文探讨了Win11共享文件夹背后的网络通信算法,重点介绍基于TCP的文件传输机制,并提供Python代码示例。Win11共享文件夹利用SMB协议实现局域网内的文件共享,通过TCP协议确保文件传输的完整性和可靠性。服务器端监听客户端连接请求,接收文件请求并分块发送文件内容;客户端则连接服务器、接收数据并保存为本地文件。文中通过Python代码详细展示了这一过程,帮助读者理解并优化文件共享系统。
文件管理系统中基于 Python 语言的二叉树查找算法探秘
在数字化时代,文件管理系统至关重要。本文探讨了二叉树查找算法在文件管理中的应用,并通过Python代码展示了其实现过程。二叉树是一种非线性数据结构,每个节点最多有两个子节点。通过文件名的字典序构建和查找二叉树,能高效地管理和检索文件。相较于顺序查找,二叉树查找每次比较可排除一半子树,极大提升了查找效率,尤其适用于海量文件管理。Python代码示例包括定义节点类、插入和查找函数,展示了如何快速定位目标文件。二叉树查找算法为文件管理系统的优化提供了有效途径。
75 5
探索企业文件管理软件:Python中的哈希表算法应用
企业文件管理软件依赖哈希表实现高效的数据管理和安全保障。哈希表通过键值映射,提供平均O(1)时间复杂度的快速访问,适用于海量文件处理。在Python中,字典类型基于哈希表实现,可用于管理文件元数据、缓存机制、版本控制及快速搜索等功能,极大提升工作效率和数据安全性。
84 0

热门文章

最新文章