用分水岭算法实现图像的分割与提取---OpenCV-Python开发指南(36)

简介: 用分水岭算法实现图像的分割与提取---OpenCV-Python开发指南(36)

图像分割


了解分水岭算法之前,我们需要了解什么是图像的分割。


在图像的处理过程中,经常需要从图像中将前景对象作为目标图像分割或者提取出来。例如,在视频监控中,观测到的是固定背景下的视频内容,而我们对背景本身并无兴趣,感兴趣的是背景中出现的车辆,行人或者其他对象。我们希望将这些对象从视频中提取出来,而忽略那些没有对象进入背景的视频内容。


分水岭算法


图像分割是图像处理过程中一种非常重要的操作。分水岭算法将图像形象地比喻为地理学上的地形表面,实现图像分割,该算法非常有用。


下面,博主对分水岭算法的相关内容做简单的介绍。(详细可以参考冈萨雷斯的《数字图像处理》一书)


任何一副灰度图像,都可以被看作是地理学上的地形表面,灰度值越高的区域可以被看成是山峰,灰度值越低的区域可以被看成是山谷。


如果我们向每个山谷中灌注不同颜色的水。那么随着水位的不断升高,不同山谷的水就汇聚到一起。在这个过程中,为了防止不同山谷的水交汇,我们需要在水流可能汇合的地方构建堤坝。该过程将图像分为两个不同的集合:集水盆地和分水岭线。我们构建的堤坝就是分水岭线,也即对原始图像的分割。这就是分水岭算法的原理。


不过,一般的图像都存在着噪声,采用分水岭算法时,会经常得到过度分割的结果。为了改善图像分割的效果,人们提出了基于掩摸的改进的分水岭算法。改进的分水岭算法允许用户将它认为是同一个分割区域的部分标注出来。这样,分水岭算法在处理时,就会将标注的部分处理为同一个分割区域。


如果对于该理论不怎么了解,可以使用软件PowerPoint中的“删除背景”功能进行观察配合理解。


waterShed函数


OpenCV中,可以使用函数cv2.watershed()函数实现分水岭算法。不过,具体实现的过程,还需要借助形态学函数,距离变换函数cv2.distanceTransform(),cv2.connectedComponents()来完成图像分割。


形态学分割

在使用分水岭算法之前,我们需要对图像进行简单的形态学处理。一般情况下,我们都是使用形态学中的开运算,因为开运算是先腐蚀后膨胀的操作,能够去除图像内的噪声。

import cv2
import numpy as np
import matplotlib.pyplot as plt
img = cv2.imread("36.jpg")
k=np.ones((5,5),dtype=np.uint8)
e=cv2.erode(img,k)
result=cv2.subtract(img,e)
plt.subplot(131)
plt.imshow(img, cmap="gray")
plt.axis('off')
plt.subplot(132)
plt.imshow(e, cmap="gray")
plt.axis('off')
plt.subplot(133)
plt.imshow(result, cmap="gray")
plt.axis('off')
plt.show()


回顾一下,我们前面的开运算函数为cv2.erode(),这里我们首先经过开运算去除噪声。然后减法运算cv2.subtract()获取图像边界。运行之后,效果如下:


distanceTransform函数

当图像内的各个子图没有连接时,可以直接使用形态学的腐蚀操作确定前景对象,但是如果图像内的子图连接在一起时,就很难确定前景对象了。这个时候,就需要借助变换函数cv2.distanceTransform()方便地将前景对象提取出来。


cv2.distanceTransform()反应了各个像素点与背景(值为0的像素点)的距离关系。通常情况下:


如果前景对象的中心距离值为0的像素点距离较远,会得到一个较大的值。

如果前景对象的边缘距离值为0的像素点较近,会得到一个较小的值。

下面,我们来使用该函数确定一副图像的前景,并观察效果。

import cv2
import numpy as np
import matplotlib.pyplot as plt
img = cv2.imread("36.jpg")
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)
k = np.ones((5, 5), dtype=np.uint8)
opening = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, k, iterations=2)
distTransform = cv2.distanceTransform(opening, cv2.DIST_L2, 5)
ret, fore = cv2.threshold(distTransform, 0.7 * distTransform.max(), 255, 0)
plt.subplot(131)
plt.imshow(img, cmap="gray")
plt.axis('off')
plt.subplot(132)
plt.imshow(distTransform, cmap="gray")
plt.axis('off')
plt.subplot(133)
plt.imshow(fore, cmap="gray")
plt.axis('off')
plt.show()


这里,我们使用cv2.morphologyEx函数进行开运算,同时使用cv2.distanceTransform得到距离图像,最后在通过cv2.threshold对距离图像进行阈值处理,确定前景。运行之后,效果如下:


确定未知区域

通过距离函数,我们获取到了图像的“中心”,也就是“确定前景”。为了方便后续的讲解,我们将确定前景称为F。


图像中有了确定前景F和确定背景B,剩下的区域就是未知区域UN了。这部分区域正是分水岭算法要进一步明确的区域。


针对一副图像0,通过以下关系能够得到未知区域UN:


未知区域UN=图像0-确定背景B-确定前景F


由上述公式变换得到:


未知区域UN=(图像0-确定背景B)-确定前景F


其中(图像0-确定背景B)就是我们开始的减法操作,通过形态学膨胀得到。也只需要将上面的代码添加4行并更改显示的代码内容:

bg=cv2.dilate(opening,k,iterations=3)
fore=np.uint8(fore)
un=cv2.subtract(bg,fore)
plt.subplot(221)
plt.imshow(img, cmap="gray")
plt.axis('off')
plt.subplot(222)
plt.imshow(bg, cmap="gray")
plt.axis('off')
plt.subplot(223)
plt.imshow(fore, cmap="gray")
plt.axis('off')
plt.subplot(224)
plt.imshow(un, cmap="gray")
plt.axis('off')
plt.show()


运行之后,效果如下:


左上为原图


右上为原图膨胀后得到的图像bg,其背景图像是确定背景B。前景图像是“原始图像0-确定背景B”


左下为确定前景图像fore


右下为未知区域图像UN


ConnectedComponents函数

明确了确定前景后,就可以对确定前景进行标注了。在OpenCV中,它提供了cv2.ConnectedComponents()函数进行标注。


该函数会将背景标注为0,将其他的对象使用从1开始的正整数标注。它只有一个参数8位单通道的待标注图像。


返回值有两个:retval为返回的标注数量,labels为标注的结果图像。


下面,我们来使用该函数进行标注。代码如下(同样更改上面bg下面代码就行):

bg = cv2.dilate(opening, k, iterations=3)
fore = np.uint8(fore)
ret, markets = cv2.connectedComponents(fore)
unknown=cv2.subtract(bg,fore)
markets=markets+1
markets[unknown==255]=0
plt.subplot(131)
plt.imshow(img, cmap="gray")
plt.axis('off')
plt.subplot(132)
plt.imshow(fore, cmap="gray")
plt.axis('off')
plt.subplot(133)
plt.imshow(markets, cmap="gray")
plt.axis('off')
plt.show()


修改上面fore = np.uint8(fore)的代码,并修改输出内容。运行之后,我们会得到原图,前景图像的中心点图像fore以及标注后的结果图像markets。效果如下:


实战分水岭算法


经过前文的介绍,我们了解了使用分水岭算法进行图像分割的基本步骤:


通过形态学开运算对原始图像0进行去噪

通过腐蚀操作获取“确定背景B”。需要注意,这里得到“原始图像-确定背景”即可

利用距离变换函数对原始图像进行运算,并对其进行阈值处理,得到“确定前景F”

计算未知区域UN(UN=0-B-F)

利用函数cv2.connectedComponents()对原始图像0进行标注

对函数cv2.connectedComponents()的标注结果进行修正

使用分水岭函数完成图像分割


完整代码如下:


import cv2
import numpy as np
import matplotlib.pyplot as plt
img = cv2.imread("36.jpg")
plt.subplot(121)
plt.imshow(img, cmap="gray")
plt.axis('off')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)
k = np.ones((5, 5), dtype=np.uint8)
opening = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, k, iterations=2)
distTransform = cv2.distanceTransform(opening, cv2.DIST_L2, 5)
ret, fore = cv2.threshold(distTransform, 0.2 * distTransform.max(), 255, 0)
bg = cv2.dilate(opening, k, iterations=3)
fore = np.uint8(fore)
ret, markets = cv2.connectedComponents(fore)
unknown = cv2.subtract(bg, fore)
markets = markets + 1
markets[unknown == 255] = 0
markets = cv2.watershed(img, markets)
img[markets == -1] = [255, 0, 0]
plt.subplot(122)
plt.imshow(img, cmap="gray")
plt.axis('off')
plt.show()


运行之后,我们就可以得到分割的图像:


当然,参数可以调整,可以看到大致的硬币被完整的分割出来了。

相关文章
|
1天前
|
算法 Serverless 数据处理
从集思录可转债数据探秘:Python与C++实现的移动平均算法应用
本文探讨了如何利用移动平均算法分析集思录提供的可转债数据,帮助投资者把握价格趋势。通过Python和C++两种编程语言实现简单移动平均(SMA),展示了数据处理的具体方法。Python代码借助`pandas`库轻松计算5日SMA,而C++代码则通过高效的数据处理展示了SMA的计算过程。集思录平台提供了详尽且及时的可转债数据,助力投资者结合算法与社区讨论,做出更明智的投资决策。掌握这些工具和技术,有助于在复杂多变的金融市场中挖掘更多价值。
22 12
|
4天前
|
算法 数据安全/隐私保护 计算机视觉
基于FPGA的图像双线性插值算法verilog实现,包括tb测试文件和MATLAB辅助验证
本项目展示了256×256图像通过双线性插值放大至512×512的效果,无水印展示。使用Matlab 2022a和Vivado 2019.2开发,提供完整代码及详细中文注释、操作视频。核心程序实现图像缩放,并在Matlab中验证效果。双线性插值算法通过FPGA高效实现图像缩放,确保质量。
|
7天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
蘑菇识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了9种常见的蘑菇种类数据集【"香菇(Agaricus)", "毒鹅膏菌(Amanita)", "牛肝菌(Boletus)", "网状菌(Cortinarius)", "毒镰孢(Entoloma)", "湿孢菌(Hygrocybe)", "乳菇(Lactarius)", "红菇(Russula)", "松茸(Suillus)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,
51 11
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
|
7天前
|
监控 算法 安全
内网桌面监控软件深度解析:基于 Python 实现的 K-Means 算法研究
内网桌面监控软件通过实时监测员工操作,保障企业信息安全并提升效率。本文深入探讨K-Means聚类算法在该软件中的应用,解析其原理与实现。K-Means通过迭代更新簇中心,将数据划分为K个簇类,适用于行为分析、异常检测、资源优化及安全威胁识别等场景。文中提供了Python代码示例,展示如何实现K-Means算法,并模拟内网监控数据进行聚类分析。
28 10
|
25天前
|
存储 算法 安全
控制局域网上网软件之 Python 字典树算法解析
控制局域网上网软件在现代网络管理中至关重要,用于控制设备的上网行为和访问权限。本文聚焦于字典树(Trie Tree)算法的应用,详细阐述其原理、优势及实现。通过字典树,软件能高效进行关键词匹配和过滤,提升系统性能。文中还提供了Python代码示例,展示了字典树在网址过滤和关键词屏蔽中的具体应用,为局域网的安全和管理提供有力支持。
50 17
|
1月前
|
算法 数据安全/隐私保护 计算机视觉
基于Retinex算法的图像去雾matlab仿真
本项目展示了基于Retinex算法的图像去雾技术。完整程序运行效果无水印,使用Matlab2022a开发。核心代码包含详细中文注释和操作步骤视频。Retinex理论由Edwin Land提出,旨在分离图像的光照和反射分量,增强图像对比度、颜色和细节,尤其在雾天条件下表现优异,有效解决图像去雾问题。
|
1月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
眼疾识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了4种常见的眼疾图像数据集(白内障、糖尿病性视网膜病变、青光眼和正常眼睛) 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张眼疾图片识别其名称。
135 5
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
|
2月前
|
算法 网络协议 Python
探秘Win11共享文件夹之Python网络通信算法实现
本文探讨了Win11共享文件夹背后的网络通信算法,重点介绍基于TCP的文件传输机制,并提供Python代码示例。Win11共享文件夹利用SMB协议实现局域网内的文件共享,通过TCP协议确保文件传输的完整性和可靠性。服务器端监听客户端连接请求,接收文件请求并分块发送文件内容;客户端则连接服务器、接收数据并保存为本地文件。文中通过Python代码详细展示了这一过程,帮助读者理解并优化文件共享系统。
|
2月前
|
存储 缓存 监控
局域网屏幕监控系统中的Python数据结构与算法实现
局域网屏幕监控系统用于实时捕获和监控局域网内多台设备的屏幕内容。本文介绍了一种基于Python双端队列(Deque)实现的滑动窗口数据缓存机制,以处理连续的屏幕帧数据流。通过固定长度的窗口,高效增删数据,确保低延迟显示和存储。该算法适用于数据压缩、异常检测等场景,保证系统在高负载下稳定运行。 本文转载自:https://www.vipshare.com
132 66
|
2月前
|
存储 缓存 算法
探索企业文件管理软件:Python中的哈希表算法应用
企业文件管理软件依赖哈希表实现高效的数据管理和安全保障。哈希表通过键值映射,提供平均O(1)时间复杂度的快速访问,适用于海量文件处理。在Python中,字典类型基于哈希表实现,可用于管理文件元数据、缓存机制、版本控制及快速搜索等功能,极大提升工作效率和数据安全性。
74 0

推荐镜像

更多