通用形态学函数---OpenCV-Python开发指南(19)

简介: 通用形态学函数---OpenCV-Python开发指南(19)

通用形态学函数


上篇博文,我们介绍了形态学的基础腐蚀与膨胀操作,而将腐蚀与膨胀结合起来进行组合,我们就能实现开运算,闭运算等复杂的形态学运算。


OpenCV中,它给我们提供的通用形态学函数为cv2.morphologyEx(),其完整定义如下:

def morphologyEx(src, op, kernel, dst=None, anchor=None, iterations=None, borderType=None, borderValue=None): 

这些参数基本前面都介绍过,不过有一点需要说明,src原始图像必须是CV_8U,CV_16U,CV_16S,CV_32F,CV_64F中的一种。


当然,这里面还有一个陌生的参数就是op,它就是各种形态学的类别,具体类别如表所示:

类型 说明 意义 操作
cv2.MORPH_ERODE 腐蚀 腐蚀 erode()
cv2.MORPH_DILATE 膨胀 膨胀 dilate()
cv2.MORPH_OPEN 开运算 先腐蚀后膨胀 dilate(erode())
cv2.MORPH_CLOSE 闭运算 先膨胀后腐蚀 erode(dilate())
cv2.MORPH_GRADIENT 形态学梯度运算 膨胀图减腐蚀图 dilate()-erode()
cv2.MORPH_TOPHAT 顶帽运算 原始图像减开运算所得图像 src-open()
cv2.MORPH_BLACKHAT 黑帽运算 闭运算所得图像减原始图像 close()-src
cv2.MORPH_HITMISS 击中击不中 前景背景腐蚀运算的交集。仅仅支持CV8UC1二进制图像 intersection(erode(src),erode(src1))


开运算


如上表所示,开运算是将原图像腐蚀,再对其进行膨胀操作。主要用于去噪,计数等。去噪我们已经通过上面的腐蚀操作就可以完成,下面我们来实现有趣的计数操作。

import cv2
import numpy as np
img = cv2.imread("open.jpg",cv2.IMREAD_UNCHANGED)
kernel = np.ones((9,9), np.float32)
result = cv2.morphologyEx(img,cv2.MORPH_OPEN,kernel,iterations=5)
cv2.imshow("img", img)
cv2.imshow("result", result)
cv2.waitKey()
cv2.destroyAllWindows()


运行之后,我们能将不同区域划分开来,效果如下:


闭运算


闭运算是先膨胀后腐蚀的运算,它有助于关闭前景物体内部的小孔,或去除物体上的小黑点,还可以将不同的前景图像进行连接。下面,我们就将上图进行连接。

import cv2
import numpy as np
img = cv2.imread("close.jpg", cv2.IMREAD_UNCHANGED)
kernel = np.ones((10, 10), np.float32)
result = cv2.morphologyEx(img, cv2.MORPH_CLOSE, kernel, iterations=7)
cv2.imshow("img", img)
cv2.imshow("result", result)
cv2.waitKey()
cv2.destroyAllWindows()


运行之后,两个方块就连接为一个整体了,效果如下所示:


形态学梯度运算


形态学梯度运算是用图像膨胀后的图像减去腐蚀图像的运算,该操作可以获取原始图像中的前景图像的边缘。我们还是用上篇膨胀的图来测试,代码如下:

import cv2
import numpy as np
img = cv2.imread("8.jpg", cv2.IMREAD_UNCHANGED)
kernel = np.ones((5, 5), np.float32)
result = cv2.morphologyEx(img, cv2.MORPH_GRADIENT, kernel,iterations=2)
cv2.imshow("img", img)
cv2.imshow("result", result)
cv2.waitKey()
cv2.destroyAllWindows()


运行之后,我们的图像就中空了,效果如下:


顶帽运算


顶帽运算是用原始图像减去其开运算图像的操作。它能够获取图像的噪声信息,或者得到比原图像的边缘更亮的边缘信息。也就是获取上图中的白色线条,具体代码如下:

import cv2
import numpy as np
img = cv2.imread("8.jpg", cv2.IMREAD_UNCHANGED)
kernel = np.ones((5, 5), np.float32)
result = cv2.morphologyEx(img, cv2.MORPH_TOPHAT, kernel,iterations=2)
cv2.imshow("img", img)
cv2.imshow("result", result)
cv2.waitKey()
cv2.destroyAllWindows()


运行之后,效果如下:


黑帽运算


黑帽运算是用闭运算图像减去原始图像的操作。它能够获取内部的小孔,或前景色中的小黑点,亦或者得到比原始图像的边缘更暗的边缘部分。这里,我们用前面的人物图像,代码如下:

import cv2
import numpy as np
img = cv2.imread("4.jpg", cv2.IMREAD_UNCHANGED)
kernel = np.ones((5, 5), np.float32)
result = cv2.morphologyEx(img, cv2.MORPH_BLACKHAT, kernel,iterations=2)
cv2.imshow("img", img)
cv2.imshow("result", result)
cv2.waitKey()
cv2.destroyAllWindows()


运行之后,效果如下:


结构元函数


前面我们介绍过,结构元可以自定义,也可以通过cv2.getStructuringElement()函数生成。这里,我们来看看其完整的定义:

def getStructuringElement(shape, ksize, anchor=None): 

shape:形状类型,取值如下表:

类型 意义
cv2.MORPH_RECT 矩形结构元,所有元素值为1
cv2.MORPH_CROSS 十字形结构元,对角线元素值为1
cv2.MORPH_ELLIPSE 椭圆形结构元素

ksize:结构元的大小


anchor:结构元的锚点位置,默认值(-1,1),是形状的中心。只有十字星型的形状与锚点位置紧密联系。在其他情况下,锚点位置仅用于形态学运算结果的调整。


下面,我们将这三种形状类型都实现一遍,具体代码如下:

import cv2
img = cv2.imread("open.jpg", cv2.IMREAD_UNCHANGED)
kernel1 = cv2.getStructuringElement(cv2.MORPH_RECT,(50,50))
kernel2 = cv2.getStructuringElement(cv2.MORPH_CROSS,(50,50))
kernel3 = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(50,50))
result1 = cv2.dilate(img,kernel1)
result2 = cv2.dilate(img,kernel2)
result3 = cv2.dilate(img,kernel3)
cv2.imshow("img", img)
cv2.imshow("result1", result1)
cv2.imshow("result2", result2)
cv2.imshow("result3", result3)
cv2.waitKey()
cv2.destroyAllWindows()


运行之后,效果如下所示:

相关文章
|
13天前
|
搜索推荐 Python
利用Python内置函数实现的冒泡排序算法
在上述代码中,`bubble_sort` 函数接受一个列表 `arr` 作为输入。通过两层循环,外层循环控制排序的轮数,内层循环用于比较相邻的元素并进行交换。如果前一个元素大于后一个元素,就将它们交换位置。
118 67
|
2月前
|
Python
【python从入门到精通】-- 第五战:函数大总结
【python从入门到精通】-- 第五战:函数大总结
72 0
|
7天前
|
Python
Python中的函数是**一种命名的代码块,用于执行特定任务或计算
Python中的函数是**一种命名的代码块,用于执行特定任务或计算
31 18
|
8天前
|
Python
Python中的函数
Python中的函数
21 8
|
15天前
|
监控 测试技术 数据库
Python中的装饰器:解锁函数增强的魔法####
本文深入探讨了Python语言中一个既强大又灵活的特性——装饰器(Decorator),它以一种优雅的方式实现了函数功能的扩展与增强。不同于传统的代码复用机制,装饰器通过高阶函数的形式,为开发者提供了在不修改原函数源代码的前提下,动态添加新功能的能力。我们将从装饰器的基本概念入手,逐步解析其工作原理,并通过一系列实例展示如何利用装饰器进行日志记录、性能测试、事务处理等常见任务,最终揭示装饰器在提升代码可读性、维护性和功能性方面的独特价值。 ####
|
22天前
|
Python
Python中的`range`函数与负增长
在Python中,`range`函数用于生成整数序列,支持正向和负向增长。本文详细介绍了如何使用`range`生成负增长的整数序列,并提供了多个实际应用示例,如反向遍历列表、生成倒计时和计算递减等差数列的和。通过这些示例,读者可以更好地掌握`range`函数的使用方法。
37 5
|
2月前
|
Python
Python之函数详解
【10月更文挑战第12天】
Python之函数详解
|
2月前
|
存储 数据安全/隐私保护 索引
|
1月前
|
测试技术 数据安全/隐私保护 Python
探索Python中的装饰器:简化和增强你的函数
【10月更文挑战第24天】在Python编程的海洋中,装饰器是那把可以令你的代码更简洁、更强大的魔法棒。它们不仅能够扩展函数的功能,还能保持代码的整洁性。本文将带你深入了解装饰器的概念、实现方式以及如何通过它们来提升你的代码质量。让我们一起揭开装饰器的神秘面纱,学习如何用它们来打造更加优雅和高效的代码。
|
1月前
|
弹性计算 安全 数据处理
Python高手秘籍:列表推导式与Lambda函数的高效应用
列表推导式和Lambda函数是Python中强大的工具。列表推导式允许在一行代码中生成新列表,而Lambda函数则是用于简单操作的匿名函数。通过示例展示了如何使用这些工具进行数据处理和功能实现,包括生成偶数平方、展平二维列表、按长度排序单词等。这些工具在Python编程中具有高度的灵活性和实用性。
31 2