AI 黑科技,老照片修复,模糊变高清

简介: AI 黑科技,老照片修复,模糊变高清

兄弟们好


最近闲逛,发现腾讯开源的老照片修复算法FPGAN新出了V1.3预训练模型,手痒试了一下,满惊艳的。


我拿“自己”的旧照片试了一下,先看效果

640.png

对比:右侧为修复后


640.png


只看人脸部分


GFPGAN


640.png

https://arxiv.org/pdf/2101.04061.pdf


FPGAN算法由腾讯PCG ARC实验室提出,其相关论文已被CVPR2021收录。


研究核心利用了包含在训练好的人脸生成模型里的「知识」, 被称之为生成人脸先验 (Generative Facial Prior, GFP)。它不仅包含了丰富的五官细节, 还有人脸颜色, 此外它能够把人脸当作一个整体来对待, 能够处理头发、耳朵、面部轮廓。基于预训练好的生成模型, 研究者们提出了利用生成人脸先验 GFP 的人脸复原模型 GFP-GAN。相比于近几年其他人脸复原的工作, GFP-GAN 不仅在五官恢复上取得了更好的细节, 整体也更加自然, 同时也能够对颜色有一定的增强作用。


640.png

GFP-GAN 框架概览图


Online 试玩版


官方提供了 Online 试玩版


Huggingface (只返回人脸)


https://huggingface.co/spaces/akhaliq/GFPGAN

Replicate.ai

https://replicate.com/xinntao/gfpgan

Baseten.co

https://app.baseten.co/applications/Q04Lz0d/operator_views/8qZG6Bg

我测试了一下,只有Replicate比较稳定。


只需将你想修复的照片拖进左边的图片框内,点击Submit即可。

640.png

比如我把自己的照片再传上去


640.png

效果不太理想,锐化有点过,貌似是因为用的V1.2的预训练模型吧。


本地运行


本地运行可以使用最新的预训练模型,修复效果更加自然,能在低质量输入的情况下,输出高质量结果。


环境要求:


Python >= 3.7 (推荐使用Anaconda or Miniconda)

PyTorch >= 1.7

Option: NVIDIA GPU + CUDA

Option: Linux

我的系统是Ubuntu 20.04.2 LTS ,Win平台没有尝试,感兴趣的同学可以试试。


克隆项目


git clone https://github.com/TencentARC/GFPGAN.git
cd GFPGAN


安装依赖


# 安装BasicSR:基于 PyTorch 的开源图像视频复原工具箱, 比如 超分辨率, 去噪, 去模糊, 去 JPEG 压缩噪声等.
pip install basicsr
# 安装facexlib: 提供实用的人脸相关功能的集合
pip install facexlib
# 安装GFPGAN依赖包
pip install -r requirements.txt
python setup.py develop
# Real-ESRGAN:图像分辨率修复工具,可以提升照片分辨率
pip install realesrgan


注:


直接pip install basicsr,我遇到大面积的warning,后面运行时报错了


ImportError: cannot import name 'load_file_from_url' from 'basicsr.utils.download_util'


大家如果有相同问题,可以尝试


!pip install basicsr


下载V1.3预训练模型


# 
wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth -P experiments/pretrained_models


模型就下载到experiments/pretrained_models目录下了

640.png


运行


终端切到GFPGAN目录下,运行:


python inference_gfpgan.py -i inputs/whole_imgs -o results -s 2


inputs目录下存放准备修复的图片,工程包里包含了部分测试图片,你也可以将自己要修复的图片放在inputs下一级的某个文件夹中。


results目录则保存处理后生成的结果图片,包含了对比图像、人脸图像、整张图像等多个子文件夹。


第一次运行时会比较慢,还会额外自动下载facexlib的模型文件;稍后片刻就能在results\cmp目录下看到修复前后的对比图片了:


640.png

640.png

相关文章
|
1月前
|
人工智能
RealisHuman:AI 生成的人像不真实?后处理框架帮你修复生成图像中畸形人体部位
RealisHuman 是一个创新的后处理框架,专注于修复生成图像中畸形的人体部位,如手和脸,通过两阶段方法提升图像的真实性。
81 11
RealisHuman:AI 生成的人像不真实?后处理框架帮你修复生成图像中畸形人体部位
|
2月前
|
编解码 人工智能 监控
VISION XL:支持四倍超分辨率的 AI 视频修复处理工具,提供去除模糊、修复缺失等功能
VISION XL是一款基于潜在扩散模型的高效视频修复和超分辨率工具,能够修复视频缺失部分、去除模糊,并支持四倍超分辨率。该工具优化了处理效率,适合快速处理视频的应用场景。
1559 6
VISION XL:支持四倍超分辨率的 AI 视频修复处理工具,提供去除模糊、修复缺失等功能
|
4月前
|
人工智能 自然语言处理 数据挖掘
利用小蜜蜂AI智能问答ChatGPT+AI高清绘图生成图文故事案例
利用小蜜蜂AI智能问答ChatGPT+AI高清绘图生成图文故事案例
81 1
|
4月前
|
人工智能 自然语言处理 IDE
CodeFuse IDE 0.6 版本发布,支持编辑器诊断问题 AI 修复
CodeFuse IDE 是基于蚂蚁自研大模型和 OpenSumi 框架的 AI 编程助手,支持多语言,提供代码建议、解释、测试生成等,增强开发效率。最新版增加 AI 修复和智能补全功能,开源并支持 VS Code 插件生态。[了解更多](https://github.com/codefuse-ai/codefuse-ide)
231 0
|
5月前
|
人工智能 自然语言处理 安全
【通义】AI视界|谷歌推出AI搜索功能“问照片”,照片一问即得……
本文汇总了AI领域的最新动态,包括谷歌推出的“问照片”功能,使用户能用自然语言检索Google Photos;OpenAI的商业用户激增及ChatGPT的广泛应用;Anthropic发布的企业级AI助手Claude Enterprise;美英欧盟首个人工智能法律约束条约;OpenAI前首席科学家新公司获巨额融资;以及比尔·盖茨对AI前景的乐观展望与安全建议。
|
6月前
|
机器学习/深度学习 人工智能 编解码
国际奥委会采用阿里云AI云技术修复奥运历史影像
国际奥委会采用阿里云AI云技术修复奥运历史影像
175 4
|
7月前
|
机器学习/深度学习 人工智能 弹性计算
智能化运维:AI在故障预测与自我修复系统中的应用
随着技术的不断进步,传统的运维模式已逐渐不能满足现代企业的需求。本文将探讨如何通过人工智能技术,特别是机器学习和深度学习算法,实现对IT系统的实时监控、故障预测以及自动化修复。我们将分析AI技术在智能运维中的具体应用案例,并讨论其带来的效率提升和成本节约效果。文章旨在为读者提供一种全新的运维视角,展示AI技术在提高系统稳定性和减少人工干预方面的潜力。
|
7月前
|
人工智能 编解码
|
23天前
|
人工智能 算法 前端开发
OmAgent:轻松构建在终端设备上运行的 AI 应用,赋能手机、穿戴设备、摄像头等多种设备
OmAgent 是 Om AI 与浙江大学联合开源的多模态语言代理框架,支持多设备连接、高效模型集成,助力开发者快速构建复杂的多模态代理应用。
179 72
OmAgent:轻松构建在终端设备上运行的 AI 应用,赋能手机、穿戴设备、摄像头等多种设备
|
9天前
|
人工智能 自然语言处理 搜索推荐
【上篇】-分两篇步骤介绍-如何用topview生成和自定义数字人-关于AI的使用和应用-如何生成数字人-优雅草卓伊凡-如何生成AI数字人
【上篇】-分两篇步骤介绍-如何用topview生成和自定义数字人-关于AI的使用和应用-如何生成数字人-优雅草卓伊凡-如何生成AI数字人
77 23
【上篇】-分两篇步骤介绍-如何用topview生成和自定义数字人-关于AI的使用和应用-如何生成数字人-优雅草卓伊凡-如何生成AI数字人

热门文章

最新文章