100天搞定机器学习:模型训练好了,然后呢?

本文涉及的产品
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
交互式建模 PAI-DSW,每月250计算时 3个月
模型训练 PAI-DLC,100CU*H 3个月
简介: 100天搞定机器学习:模型训练好了,然后呢?

大家好,我是老胡。


许久没有更新100天搞定机器学习系列了,最近在看一个开源框架,其中有用到 gRPC ,它可以用于机器学习模型的部署,也可用于深度学习框架的开发,本文就当是《100天搞定机器学习》的番外篇吧,gRPC ,我们一起探个究竟。


640.png


gRPC(Remote Procedure Call)


gRPC 由 Google 开发,是一款语言中立、平台中立、开源的 RPC 框架。

RPC(Remote Procedure Call)即:远程过程调用,它是一种通过网络从远程计算机程序上请求服务,而不需要了解底层网络技术的协议。使用的时候,客户端调用server端提供的接口就像是调用本地的函数一样。


比如:有两台服务器A,B,一个应用部署在A服务器上,想要调用B服务器上应用提供的函数/方法,由于不在一个内存空间,不能直接调用,需要通过网络来表达调用的语义和传达调用的数据。


640.png


RPC更像是一种思想或机制,其实现方式有很多,除了gRPC ,还有阿里巴巴的 Dubbo、Facebook 的 Thrift、Twitter 的 Finagle 等。


gRPC 基于以下理念:定义一个服务,指定其能够被远程调用的方法(包含参数和返回类型)。在服务端实现这个接口,并运行一个 gRPC 服务器来处理客户端调用。在客户端拥有一个存根能够像服务端一样的方法。你可以很容易地用 c++ 创建一个 gRPC 服务端,用 Go、Python、Ruby 来创建客户端。

640.png


上图中的 Protocbuf 是gRPC的数据序列化工具,使用 Protobuf 将数据序列化成二进制的数据流,即可让用不同语言(proto3支持C++, Java, Python, Go, Ruby, Objective-C, C#)编写并在不同平台上运行的应用程序交换数据。ps:Protocbuf 也是 Google 开源的。


Protocol Buffer 官方提供了编译工具来对 proto 文件进行编译并生成语言相关的代码文件,可以极大地减少编码的工作量。对于序列化协议来说,使用方只需要关注业务对象本身,即 idl 定义,序列化和反序列化的代码只需要通过工具生成即可。

640.png

                              ProtoBuf 协议的工作流程


gRPC 实例详解——机器学习模型部署

640.png


开始实例之前,需要安装 gRPC 及相关工具


pip install -U grpcio
pip install -U grpcio-tools
pip install -U protobuf


gRPC的使用通常包括如下几个步骤:


  • 通过protobuf来定义接口和数据类型
  • 编写gRPC server端代码
  • 编写gRPC client端代码


下面我们就以Iris数据集为例,用 gRPC server端部署一个随机森林分类器,client 端发起请求预测鸢尾花类型。


640.png


0、训练一个随机森林分类模型,把训练好的模型保存为pkl文件。


# train_model.py
from sklearn import datasets
from sklearn.pipeline import Pipeline
import joblib
from sklearn.ensemble import RandomForestClassifier
def main():
    clf = RandomForestClassifier()
    p = Pipeline([('clf', clf)])
    p.fit(X, y)
    filename_p = 'IrisClassifier.pkl'
    joblib.dump(p, filename_p)
    print('Model saved!')
if __name__ == "__main__":
    iris = datasets.load_iris()
    X, y = iris.data, iris.target
    main()


1、通过protobuf定义接口和数据类型


新建一个iris_demo.proto文件


syntax = "proto3";
package iris;
message IrisPredictRequest {// 定义参数1
    float sepal_length = 1;//参数字段1
    float sepal_width = 2;//参数字段2
    float petal_length = 3;//参数字段3
    float petal_width = 4;//参数字段4
}
message IrisPredictResponse {// 定义参数1
    int32 species = 1;
}
service IrisPredictor{// 定义服务
    rpc predict_iris_species(IrisPredictRequest) returns (IrisPredictResponse){} 
}


proto文件格式一般三部分组成,


  • 头部的syntax 注明版本号为 "proto3",必须写,没理由。
  • 中间的 message 定义了predict_iris_species方法的参数IrisPredictRequest和IrisPredictResponse,还有参数字段的类型。
  • 尾部的 service 定义一个服务IrisPredictor,其中包括 1 个predict_iris_species的RPC方法。这里可以定义多个RPC方法,在 message 中定义对应的参数即可。


2、使用gRPC protobuf生成Python的库函数


python -m grpc_tools.protoc -I=. --python_out=. --grpc_python_out=. ./iris_demo.proto


其中:


-I指定了源文件的路径


--python_out, 指定 xxx_pb2.py的输出路径,如果使用其它语言请使用对应语言的option


--grpc_python_out 指定xxx_pb2_grpc.py文件的输出路径


--*.proto是要编译的proto文件。


运行成功后,会自动生成iris_demo_pb2.py(里面有消息序列化类)和

iris_demo_pb2_grpc.py(包含了服务器 Stub 类和客户端 Stub 类,以及待实现的服务 RPC 接口)。我们无需关心这两个py文件的细节,只需要直到在服务端和客户端怎么调用即可。


本例中,我们会用到的方法如下:


xxx_pb2.py

├── xxx_pb2.IrisPredictRequest   用于传入特征数据

├── xxx_pb2.IrisPredictResponse 用于预测

xxxx_pb2_grpc.py

├── xxx_pb2_grpc.IrisPredictorServicer  服务器 Stub 类

├── xxx_pb2_grpc.IrisPredictorStub  客户端 Stub 类


3、写一个服务器


这里的重点是定义 IrisPredictor 类的 predict_iris_species 方法,然后用 iris_demo_pb2_grpc.py 中的 add_IrisPredictorServicer_to_server 方法将 IrisPredictor 添加到 server。serve 函数里定义了 gRPC 的运行方式,使用 4 个 worker 的线程池。


# iris_prediction_server.py
import grpc
from concurrent import futures
import time
import joblib
import iris_demo_pb2
import iris_demo_pb2_grpc
import predict_iris
from sklearn.ensemble import RandomForestClassifier
class IrisPredictor(iris_demo_pb2_grpc.IrisPredictorServicer):
    @classmethod
    def get_trained_model(cls):
        cls._model = joblib.load('IrisClassifier.pkl')
        return cls._model
    def predict_iris_species(self, request, context):
        model = self.__class__.get_trained_model()
        sepal_length = request.sepal_length
        sepal_width = request.sepal_width
        petal_length = request.petal_length
        petal_width = request.petal_width
        result = model.predict(
            [[sepal_length, sepal_width, petal_length, petal_width]])
        response = iris_demo_pb2.IrisPredictResponse(species=result[0])
        return response  # not sure
def run():
    server = grpc.server(futures.ThreadPoolExecutor(max_workers=4))
    iris_demo_pb2_grpc.add_IrisPredictorServicer_to_server(
        IrisPredictor(), server)
    server.add_insecure_port('[::]:50055')
    server.start()
    print("grpc server start...")
    print("Listening on port 50055")
    server.wait_for_termination()
if __name__ == '__main__':
    run()


4、写一个客户端


客户端的逻辑更加简单,连上gRPC服务,然后发起调用。


# iris_prediction_client.py
import grpc
import iris_demo_pb2
import iris_demo_pb2_grpc
def run():
    channel = grpc.insecure_channel('localhost:50055')
    stub = iris_demo_pb2_grpc.IrisPredictorStub(channel)
    request = iris_demo_pb2.IrisPredictRequest(
        sepal_length=6.7,
        sepal_width=3.0,
        petal_length=5.2,
        petal_width=2.3)
    response = stub.predict_iris_species(request)
    print('The prediction is :', response.species)
if __name__ == '__main__':
    run()


5、调用 RPC


先开启服务端


$ python iris_prediction_server.py 
grpc server start...
Listening on port 50055


另起一个terminal执行客户端代码,调用gRPC服务,预测结果如下:


$ python iris_prediction_client.py 
The prediction is : 2


相关文章
|
2月前
|
人工智能 自然语言处理 IDE
模型微调不再被代码难住!PAI和Qwen3-Coder加速AI开发新体验
通义千问 AI 编程大模型 Qwen3-Coder 正式开源,阿里云人工智能平台 PAI 支持云上一键部署 Qwen3-Coder 模型,并可在交互式建模环境中使用 Qwen3-Coder 模型。
658 109
|
3月前
|
人工智能 自然语言处理 运维
【新模型速递】PAI-Model Gallery云上一键部署Kimi K2模型
月之暗面发布开源模型Kimi K2,采用MoE架构,参数达1T,激活参数32B,具备强代码能力及Agent任务处理优势。在编程、工具调用、数学推理测试中表现优异。阿里云PAI-Model Gallery已支持云端部署,提供企业级方案。
299 0
【新模型速递】PAI-Model Gallery云上一键部署Kimi K2模型
|
6月前
|
人工智能 JSON 算法
【解决方案】DistilQwen2.5-DS3-0324蒸馏小模型在PAI-ModelGallery的训练、评测、压缩及部署实践
DistilQwen 系列是阿里云人工智能平台 PAI 推出的蒸馏语言模型系列,包括 DistilQwen2、DistilQwen2.5、DistilQwen2.5-R1 等。本文详细介绍DistilQwen2.5-DS3-0324蒸馏小模型在PAI-ModelGallery的训练、评测、压缩及部署实践。
|
4月前
|
机器学习/深度学习 算法 安全
差分隐私机器学习:通过添加噪声让模型更安全,也更智能
本文探讨在敏感数据上应用差分隐私(DP)进行机器学习的挑战与实践。通过模拟DP-SGD算法,在模型训练中注入噪声以保护个人隐私。实验表明,该方法在保持71%准确率和0.79 AUC的同时,具备良好泛化能力,但也带来少数类预测精度下降的问题。研究强调差分隐私应作为模型设计的核心考量,而非事后补救,并提出在参数调优、扰动策略选择和隐私预算管理等方面的优化路径。
361 3
差分隐私机器学习:通过添加噪声让模型更安全,也更智能
|
3月前
|
人工智能 自然语言处理 运维
【新模型速递】PAI-Model Gallery云上一键部署gpt-oss系列模型
阿里云 PAI-Model Gallery 已同步接入 gpt-oss 系列模型,提供企业级部署方案。
|
4月前
|
机器学习/深度学习 人工智能 算法
Post-Training on PAI (4):模型微调SFT、DPO、GRPO
阿里云人工智能平台 PAI 提供了完整的模型微调产品能力,支持 监督微调(SFT)、偏好对齐(DPO)、强化学习微调(GRPO) 等业界常用模型微调训练方式。根据客户需求及代码能力层级,分别提供了 PAI-Model Gallery 一键微调、PAI-DSW Notebook 编程微调、PAI-DLC 容器化任务微调的全套产品功能。
|
3月前
|
机器学习/深度学习 自然语言处理 算法
Java 大视界 -- Java 大数据机器学习模型在自然语言处理中的对抗训练与鲁棒性提升(205)
本文探讨Java大数据与机器学习在自然语言处理中的对抗训练与鲁棒性提升,分析对抗攻击原理,结合Java技术构建对抗样本、优化训练策略,并通过智能客服等案例展示实际应用效果。
|
4月前
|
机器学习/深度学习 分布式计算 Java
Java 大视界 -- Java 大数据机器学习模型在遥感图像土地利用分类中的优化与应用(199)
本文探讨了Java大数据与机器学习模型在遥感图像土地利用分类中的优化与应用。面对传统方法效率低、精度差的问题,结合Hadoop、Spark与深度学习框架,实现了高效、精准的分类。通过实际案例展示了Java在数据处理、模型融合与参数调优中的强大能力,推动遥感图像分类迈向新高度。
|
4月前
|
机器学习/深度学习 存储 Java
Java 大视界 -- Java 大数据机器学习模型在游戏用户行为分析与游戏平衡优化中的应用(190)
本文探讨了Java大数据与机器学习模型在游戏用户行为分析及游戏平衡优化中的应用。通过数据采集、预处理与聚类分析,开发者可深入洞察玩家行为特征,构建个性化运营策略。同时,利用回归模型优化游戏数值与付费机制,提升游戏公平性与用户体验。

热门文章

最新文章

相关产品

  • 人工智能平台 PAI
  • 下一篇
    oss云网关配置