机器学习基础:决策树的可视化

简介: 机器学习基础:决策树的可视化

目前无论是机器学习竞赛还是工业界,最流行、应用最广泛的xgboost其实是优化后的GBDT(LightGBM里面的boosting比较经典稳定的也是GBDT哦!),而GBDT的基分类器最常用的就是CART决策树!掌握决策树,对理解之后的GBDT、LightGBM都有大有裨益。


决策树原理及案例我们之前已经讲过很多,感兴趣的同学在上面搜索框搜索‘决策树’即可,本文我们仅介绍可视化工具包的安装配置方法和决策树可视化方法/解析,让大家对决策树有更形象的理解。


GraphViz配置指南


GraphViz是AT&T Lab开发的开源工具包,用于绘制dot语言脚本描述的图形,我们只需要关心点和边的关系,不需考虑布局、位置等,用来结合Python绘制图模型真是再好不过。


640.png


Graphviz 应用程序中有多种工具可以生成各种类型的图表(dot、neato、circo、twopi 等)。本文将重点介绍用于生成层级图的dot工具。


环境配置步骤:


1、首先下载安装包graphviz-2.38.msi,下载地址为graphviz官网


image.png


2、双击msi文件,然后一直选择next(默认安装路径为C:\Program Files (x86)\Graphviz2.38\),安装完成之后,会在windows开始菜单创建快捷信息。


image.png


3、配置环境变量:计算机→属性→高级系统设置→高级→环境变量→系统变量→path,在path中加入路径:

image.png

4、验证:在windows命令行界面,输入dot -version,然后按回车,如果显示如下图所示的graphviz相关版本信息,则安装配置成功。

image.png

5、在C:/Users/H.X.X/anaconda3/Lib/site-packages找到pydot.py这个文件,在spyder里面用Ctrl+F搜索self.prog,把self.prog=‘dot’改成’dot.exe’,保存。一共会搜出六个结果,只需要改这一处就好。

image.png

6、安装graphviz和pydotplus的python模块, 它的安装和安装普通的模块一样, 就是使用pip:

image.png

7、在Python终端测试,配置完毕

image.png

CART@GraphViz可视化

from sklearn.datasets import load_iris
from sklearn import tree
import pydotplus
import sys
import os       
iris = load_iris()
clf = tree.DecisionTreeClassifier()
clf = clf.fit(iris.data, iris.target)
from IPython.display import Image  
dot_data = tree.export_graphviz(clf, out_file=None, 
                         feature_names=iris.feature_names,  
                         class_names=iris.target_names,  
                         filled=True, rounded=True,  
                         special_characters=True)  
graph = pydotplus.graph_from_dot_data(dot_data)  
Image(graph.create_png())

image.png


除叶节点(终端节点)之外的所有节点都有 5 部分


  • 基于一个特征的值的有关数据的问题。每个问题的答案要么是 True,要么就是 False。数据点会根据该问题的答案在该决策树中移动。
  • gini:节点的基尼不纯度。当沿着树向下移动时,平均加权的基尼不纯度必须降低。
  • samples:节点中观察的数量。
  • value:每一类别中样本的数量。比如,顶部节点中有 2 个样本属于类别 0,有 4 个样本属于类别 1。
  • class:节点中大多数点的类别(持平时默认为 0)。在叶节点中,这是该节点中所有样本的预测结果。
相关文章
|
7月前
|
机器学习/深度学习 数据采集 数据可视化
基于爬虫和机器学习的招聘数据分析与可视化系统,python django框架,前端bootstrap,机器学习有八种带有可视化大屏和后台
本文介绍了一个基于Python Django框架和Bootstrap前端技术,集成了机器学习算法和数据可视化的招聘数据分析与可视化系统,该系统通过爬虫技术获取职位信息,并使用多种机器学习模型进行薪资预测、职位匹配和趋势分析,提供了一个直观的可视化大屏和后台管理系统,以优化招聘策略并提升决策质量。
346 4
|
6月前
|
机器学习/深度学习 数据可视化 JavaScript
探索机器学习模型的可视化技术
【9月更文挑战第23天】在数据科学中,理解和解释机器学习模型的决策过程是至关重要的。本文将介绍几种流行的可视化工具和库,如TensorBoard、D3.js等,帮助读者更好地理解模型内部工作原理及其预测结果。通过实例演示如何使用这些工具进行模型可视化,增强模型的可解释性。
|
5月前
|
机器学习/深度学习 算法 数据可视化
【机器学习】决策树------迅速了解其基本思想,Sklearn的决策树API及构建决策树的步骤!!!
【机器学习】决策树------迅速了解其基本思想,Sklearn的决策树API及构建决策树的步骤!!!
|
6月前
|
机器学习/深度学习 算法 Python
从菜鸟到大师:一棵决策树如何引领你的Python机器学习之旅
【9月更文挑战第9天】在数据科学领域,机器学习如同璀璨明珠,吸引无数探索者。尤其对于新手而言,纷繁复杂的算法常让人感到迷茫。本文将以决策树为切入点,带您从Python机器学习的新手逐步成长为高手。决策树以其直观易懂的特点成为入门利器。通过构建决策树分类器并应用到鸢尾花数据集上,我们展示了其基本用法及效果。掌握决策树后,还需深入理解其工作原理,调整参数,并探索集成学习方法,最终将所学应用于实际问题解决中,不断提升技能。愿这棵智慧之树助您成为独当一面的大师。
68 3
|
6月前
|
机器学习/深度学习 算法 Python
决策树下的智慧果实:Python机器学习实战,轻松摘取数据洞察的果实
【9月更文挑战第7天】当我们身处数据海洋,如何提炼出有价值的洞察?决策树作为一种直观且强大的机器学习算法,宛如智慧之树,引领我们在繁复的数据中找到答案。通过Python的scikit-learn库,我们可以轻松实现决策树模型,对数据进行分类或回归分析。本教程将带领大家从零开始,通过实际案例掌握决策树的原理与应用,探索数据中的秘密。
78 1
|
6月前
|
机器学习/深度学习 算法 前端开发
R语言基础机器学习模型:深入探索决策树与随机森林
【9月更文挑战第2天】决策树和随机森林作为R语言中基础且强大的机器学习模型,各有其独特的优势和适用范围。了解并熟练掌握这两种模型,对于数据科学家和机器学习爱好者来说,无疑是一个重要的里程碑。希望本文能够帮助您更好地理解这两种模型,并在实际项目中灵活应用。
|
7月前
|
机器学习/深度学习 数据采集 数据可视化
基于python 机器学习算法的二手房房价可视化和预测系统
文章介绍了一个基于Python机器学习算法的二手房房价可视化和预测系统,涵盖了爬虫数据采集、数据处理分析、机器学习预测以及Flask Web部署等模块。
220 2
基于python 机器学习算法的二手房房价可视化和预测系统
|
7月前
|
机器学习/深度学习 算法
【机器学习】SVM面试题:简单介绍一下SVM?支持向量机SVM、逻辑回归LR、决策树DT的直观对比和理论对比,该如何选择?SVM为什么采用间隔最大化?为什么要将求解SVM的原始问题转换为其对偶问题?
支持向量机(SVM)的介绍,包括其基本概念、与逻辑回归(LR)和决策树(DT)的直观和理论对比,如何选择这些算法,SVM为何采用间隔最大化,求解SVM时为何转换为对偶问题,核函数的引入原因,以及SVM对缺失数据的敏感性。
125 3
|
7月前
|
机器学习/深度学习 算法
【机器学习】支持向量机SVM、逻辑回归LR、决策树DT的直观对比和理论对比,该如何选择(面试回答)?
文章对支持向量机(SVM)、逻辑回归(LR)和决策树(DT)进行了直观和理论上的对比,并提供了在选择这些算法时的考虑因素,包括模型复杂度、损失函数、数据量需求、对缺失值的敏感度等。
103 1

热门文章

最新文章