Matplotlib数据可视化:三大容器对象与常用设置(上)

本文涉及的产品
容器镜像服务 ACR,镜像仓库100个 不限时长
简介: Matplotlib数据可视化:三大容器对象与常用设置(上)

1 figure


1.1 创建figure


在上文中我们一直提到的figure指的是Figure类的实例化对象,当然我们一般不会直接去实例化Figure类,因为这样创建的Figure实例对象不能纳入序列中共同管理。matplotlib中提供了多种方法创建figure,其中属pyplot模块中的figure()方法最常用也最方便,下面我们来说说这个方法。


figure方法参数如下:


  • num:整型或字符串类型,可选参数,默认为None。这个参数课可以理解为是figure的身份标识,即id。当值为None时,会创建一个figure实例,该实例的num值会在已有基础上自增;当该参数不为None时,如果与已有的num值重复,则会切换到该figure使其处于激活状态,并返回一个该figure的引用;如果传入的参数为字符串,该字符串将会被设置为figure的标题。
  • figsize:tuple类型,可选参数,默认为None。通过figsize参数可以设置figure的size,即(width, height),单位为inch。当值为None时,采用默认size。
  • dpi:整型,可选参数,用于设置图片像素。
  • facecolor:可选参数,用于设置前景色,默认为白色。
  • edgecolor:可选参数,用于设置边框颜色,默认为黑色。
  • frameon:bool类型,可选参数,表示是否绘制窗口的图框,默认是。
  • FigureClass:传入一个类名,当使用自定义的类实例化figure时使用,默认为matplotlib.figure.Figure。
  • clear:bool类型,可选参数,默认为False。如果值为True的话,如果figure已存在,则会清除该figure的全部内容。


from matplotlib import pyplot as plt
import matplotlib as mpl
import numpy as np
mpl.rcParams['font.sans-serif'] = ['SimHei']  # 中文字体支持

640.png


fig = plt.figure(figsize=(4,2), facecolor='grey')  # 创建figure
fig.add_axes((0,0,1,1))  # 必须添加axes后才能显示
plt.show()

640.png


在jupyter编辑器中,空白的figure是不会显示的,所以必须在figure中至少添加一个axes。


1.2 figure的常用设置


1.2.1 set方法通用设置


创建figure时的各个参数基本都可以通过figure实例对象中对应的对应的set方法进行修改,例如set_facecolor()用来设置前景色,set_size_inches()用来设置大小等。

设置前景色:


fig = plt.figure(figsize=(4,2))
fig.set_facecolor('grey')  # 设置前景色
plt.plot()
plt.show()

640.png

fig = plt.figure()
fig.set_size_inches(2,3)  # 设置大小
plt.plot()
plt.show()

640.png


1.2.2 设置figure标题


fig = plt.figure(figsize=(4,2))
fig.suptitle("figure title", color='red')  # 设置figure标题
plt.plot()
plt.show()


640.png


1.2.3 添加文本


fig = plt.figure(figsize=(4,2))
fig.text(0.5,0.5,"figure text",color='red')  # 设置figure标题,前两个参数分别表示到左边框和上边框的百分比距离
plt.plot()
plt.show()


640.png


1.2.4 设置图例

fig = plt.figure(figsize=(5,3))
axes = fig.add_axes((0,0,0.8,1))
x = np.linspace(0, 10, 1000)
line1, = axes.plot(x, np.sin(x))  # 注意,line1后面有个逗号,因为plot()方法返回值是一个列表
line2, = axes.plot(x, np.cos(x))
fig.legend([line1, line2],['sin', 'cos'])
plt.show()


640.png


1.2.5 设置子图间距


fig, axes = plt.subplots(2,2,facecolor='grey')
fig.subplots_adjust(left=None,   # 设置画图区域与figure上下左右边框的比例距离
                    bottom=None, 
                    right=None, 
                    top=None,
                    wspace=0.3,   # 子图间水平方向距离
                    hspace=1)     # 子图间垂直方向距离
plt.show()

640.png

相关文章
|
4月前
|
数据可视化 数据挖掘 Linux
震撼发布!Python数据分析师必学,Matplotlib与Seaborn数据可视化实战全攻略!
在数据科学领域,数据可视化是连接数据与洞察的桥梁,能让复杂的关系变得直观。本文通过实战案例,介绍Python数据分析师必备的Matplotlib与Seaborn两大可视化工具。首先,通过Matplotlib绘制基本折线图;接着,使用Seaborn绘制统计分布图;最后,结合两者在同一图表中展示数据分布与趋势,帮助你提升数据可视化技能,更好地讲述数据故事。
66 1
|
8天前
|
数据可视化 数据挖掘 开发者
Pandas数据可视化:matplotlib集成(df)
Pandas 是 Python 中强大的数据分析库,Matplotlib 是常用的绘图工具。两者结合可方便地进行数据可视化,帮助理解数据特征和趋势。本文从基础介绍如何在 Pandas 中集成 Matplotlib 绘制图表,如折线图、柱状图等,并深入探讨常见问题及解决方案,包括图表显示不完整、乱码、比例不合适、多子图布局混乱、动态更新图表等问题,提供实用技巧和代码示例。掌握这些方法后,你将能更高效地处理数据可视化任务。
38 9
|
2月前
|
Linux Python Windows
Matplotlib 中设置自定义中文字体的正确姿势
【11月更文挑战第16天】Matplotlib 默认不支持中文字体显示,需手动配置。方法包括:1) 修改全局字体设置,适用于整个脚本;2) 局部设置特定元素的字体;3) 使用系统字体名称,但可能因系统而异。通过这些方法可以有效解决中文乱码问题,确保图表中文本的正确显示。
126 3
|
2月前
|
移动开发 数据可视化 数据挖掘
利用Python实现数据可视化:以Matplotlib和Seaborn为例
【10月更文挑战第37天】本文旨在引导读者理解并掌握使用Python进行数据可视化的基本方法。通过深入浅出的介绍,我们将探索如何使用两个流行的库——Matplotlib和Seaborn,来创建引人入胜的图表。文章将通过具体示例展示如何从简单的图表开始,逐步过渡到更复杂的可视化技术,帮助初学者构建起强大的数据呈现能力。
|
3月前
|
数据可视化 数据挖掘 API
Python中的数据可视化利器:Matplotlib与Seaborn对比解析
在Python数据科学领域,数据可视化是一个重要环节。它不仅帮助我们理解数据,更能够让我们洞察数据背后的故事。本文将深入探讨两种广泛使用的数据可视化库——Matplotlib与Seaborn,通过对比它们的特点、优劣势以及适用场景,为读者提供一个清晰的选择指南。无论是初学者还是有经验的开发者,都能从中找到有价值的信息,提升自己的数据可视化技能。
165 3
|
4月前
|
数据可视化 Python
Python中的数据可视化:使用Matplotlib绘制图表
【9月更文挑战第11天】在这篇文章中,我们将探索如何使用Python的Matplotlib库来创建各种数据可视化。我们将从基本的折线图开始,然后逐步介绍如何添加更多的功能和样式,以使您的图表更具吸引力和信息量。无论您是数据科学家、分析师还是任何需要将数据转化为视觉形式的专业人士,这篇文章都将为您提供一个坚实的起点。让我们一起潜入数据的海洋,用视觉的力量揭示其背后的故事。
66 17
|
3月前
|
数据可视化 定位技术 Python
Python数据可视化--Matplotlib--入门
Python数据可视化--Matplotlib--入门
34 0
|
4月前
|
数据可视化 数据挖掘 开发者
数据可视化新纪元!Python + Matplotlib + Seaborn,让你的数据故事生动起来!
在这个数据可视化的新纪元,让我们充分发挥 Python 的优势,用精彩的图表讲述数据背后的故事,为决策提供有力的支持,为交流带来清晰的视角。
39 4
|
4月前
|
机器学习/深度学习 数据可视化 数据挖掘
数据可视化大不同!Python数据分析与机器学习中的Matplotlib、Seaborn应用新视角!
在数据科学与机器学习领域,数据可视化是理解数据和优化模型的关键。Python凭借其强大的可视化库Matplotlib和Seaborn成为首选语言。本文通过分析一份包含房屋面积、卧室数量等特征及售价的数据集,展示了如何使用Matplotlib绘制散点图,揭示房屋面积与售价的正相关关系;并利用Seaborn的pairplot探索多变量间的关系。在机器学习建模阶段,通过随机森林模型展示特征重要性的可视化,帮助优化模型。这两个库在数据分析与建模中展现出广泛的应用价值。
61 2
|
4月前
|
数据可视化 数据挖掘 API
使用Python进行数据可视化:探索Matplotlib和Seaborn库
【9月更文挑战第19天】在数据科学领域,将复杂的数据集转换成直观、易懂的图形是一项基本而关键的技能。本文旨在通过Python编程语言介绍两个强大的数据可视化库——Matplotlib和Seaborn,以及它们如何帮助数据分析师和研究人员揭示数据背后的故事。我们将从基础概念讲起,逐步深入到高级技巧,确保无论读者的背景如何,都能获得必要的知识和启发,以在自己的项目中实现有效的数据可视化。

热门文章

最新文章