猿创正文|C++——模板初阶|泛型编程|函数模板|函数模板概念 |函数模板格式|函数模板的实例化|模板参数的匹配原则|类模板 |类模板定义格式|习题

简介: 笔记

泛型编程


void Swap(int& left, int& right)
{
  int temp = left;
  left = right;
  right = temp;
}
void Swap(double& left, double& right)
{
  double temp = left;
  left = right;
  right = temp;
}
void Swap(char& left, char& right)
{
  char temp = left;
  left = right;
  right = temp;
}

交换函数,对于多种类型,需要写多个交换函数


使用函数重载虽然可以实现,但是有一下几个不好的地方:

1. 重载的函数仅仅是类型不同,代码复用率比较低,只要有新类型出现时,就需要用户自己增加对应的函

2. 代码的可维护性比较低,一个出错可能所有的重载均出错

C++中,我们可以用“模板”只需要写一个函数就可以针对多种类型进行使用,这种方法就叫泛型编程。


泛型编程:编写与类型无关的通用代码,是代码复用的一种手段。模板是泛型编程的基础


函数模板

函数模板概念

函数模板代表了一个函数家族,该函数模板与类型无关,在使用时被参数化,根据实参类型产生函数的特定类型版本。


函数模板格式

template<typename T1, typename T2,......,typename Tn>

返回值类型 函数名(参数列表){}

template<typename T>
void Swap(T& left, T& right)
{
  T temp = left;
  left = right;
  right = temp;
}

注意:typename是用来定义模板参数关键字,也可以使用class(切记:不能使用struct代替class),typename后面<>中类型名字T是随便取的,一般是大写字母或单词首字母大写


T代表是一个模板类型(虚拟类型)


函数模板是一个蓝图,它本身并不是函数,是编译器用使用方式产生特定具体类型函数的模具。所以其实模板就是将本来应该我们做的重复的事情交给了编译器

1.png2.png

观察 上面函数地址,可发现调用的不是同一个函数

在使用C++时,不需要字节写swap函数,std库里面有swap函数(四个字母都是小写),可直接拿来使用

3.png

C语言中,之前写交换用异或,但这种方式只能针对整形,所以建议用swap

函数模板的实例化


4.png0.png

第二个Add会报错

如果不是模板形式,则不会报错,但会有警告,发生了隐式类型转换

5.png6.png

我们可以比较出,模板不能发生隐式类型转换

这是因为在推演实例化的时候报错,根据第一个参数,推演出T时int类型,但第二个参数T又是double类型,所以会报错

解决方法如下:

方法1 传参之前前置类型转换,这种方法也叫编译器自动推演,隐式实例化

7.png8.png

方法2  显示实例化

在函数名和参数中间加<>

9.png

方法一 是在传参之前就把自己的类型给强制转换了,方法二是把指定T为<>中的类型

这种情况下必须用显示实例化,不然会报错

10.png11.png

编译器没办法自动推演出自定义类型,所以要加上显示实例化

12.png

显示实例化也可以这样使用

template<typename T1,typename T2>
T1 Add(const T1& left, const T2& right)
{
  return left + right;
}
int main()
{
  Add(10, 10.000);
  return 0;
}

模板参数的匹配原则

1. 一个非模板函数可以和一个同名的函数模板同时存在,而且该函数模板还可以被实例化为这个非模板函数13.png

第一个Add调用了,Add函数,第二个Add,调用了模板

当给第一个换了实参以后,第一个函数会调用模板,这是因为编译器会对参数有一个匹配机制

14.png

实际中不建议写这种代码

类模板


类模板定义格式

template<class T1, class T2, ..., class Tn>
class 类模板名
{
  // 类内成员定义
};

对于之前我们写的栈类型


typedef char STDataType;
class Stack
{
private:
  STDataType* _a;
  int top;
  int capacity;
};
int main()
{
  Stack st1;
  return 0;
}

如果创建俩个变量st1要求数组是char类型,st2要求是int类型,上面写的这种栈实现起来比较麻烦


我们可以用类模板来解决上面这个问题


template <typename T>
class Stack
{
public:
  Stack(size_t capacity=4)
  :_a(nullptr),
  _capacity(0),
  _top(0)
  {
  if (capacity > 0)
  {
    _a = new T[capacity];
    _capacity = capacity;
    _top = 0;
  }
  }
private:
  T* _a;
  int _top;
  int _capacity;
};
int main()
{
  //类模板都是实例化
  Stack<int> st1(100);//默认构造时传的100
  Stack<char> st2;
  return 0;
}

类模板都是实例化,虽然它们用了一个类模板,但是它们是俩个类型


template<typename T>
class Stack
{
public:
  Stack(size_t capacity = 4)
  :_a(nullptr)
  , _top(0)
  , _capacity(0)
  {
  if (capacity > 0)
  {
  _a = new T[capacity];
  _capacity = capacity;
  _top = 0;
  }
  }
  Stack(size_t capacity = 0)
  {
  if (capacity > 0)
  {
    _a = new T[capacity];
    _capacity = capacity;
    _top = 0;
  }
  }
  ~Stack()
  {
  delete[] _a;
  _a = nullptr;
  _capacity = _top = 0;
  }
  Push(const T& x)
  {
  if (_top == _capacity)
  {
    size_t newCapacity = _capacity == 0 ? 4 : _capacity * 2;
    T* tmp = new T[newCapacity];
    if (_a)
    {
    memcpy(tmp, _a, sizeof(T) * _top);
    delete[] _a;
    }
    _a = tmp;
    _capacity = newCapacity;
  }
  _a[_top] = x;
  ++_top;
  }
  void Pop()
  {
  assert(_top > 0);
  --_top;
  }
  bool Empty()
  {
  return _top == 0;
  }
  const T& Top()
  {
  assert(_top > 0);
  return _a[_top - 1];
  }
private:
  T* _a = nullptr;
  size_t _top = 0;
  size_t _capacity = 0;
};


模板不支持一个在.h生命在.cpp定义


但支持在同一个.cpp文件里面声明和定义分离


15.png16.png

有的地方会把模板写道.hpp文件中

模板也能给缺省参数,只不过给的是类型

17.png

这样写记得加上<>,不加就会报错

18.png


习题


习题1  下面有关C++中为什么用模板类的原因,描述错误的是? ( )

A.可用来创建动态增长和减小的数据结构


B.它是类型无关的,因此具有很高的可复用性


C.它运行时检查数据类型,保证了类型安全


D.它是平台无关的,可移植性


选C


A.模板可以具有非类型参数,用于指定大小,可以根据指定的大小创建动态结构


B.模板最重要的一点就是类型无关,提高了代码复用性


C.模板运行时不检查数据类型,也不保证类型安全,相当于类型的宏替换,故错误


D.只要支持模板语法,模板的代码就是可移植的


习题2 下列关于模板的说法正确的是( )

A.模板的实参在任何时候都可以省略


B.类模板与模板类所指的是同一概念


C.类模板的参数必须是虚拟类型的


D.类模板中的成员函数全是模板函数


选D


A.不一定,参数类型不同时有时需要显示指定类型参数


B.类模板是一个类家族,模板类是通过类模板实例化的具体类


C.C++中类模板的声明格式为template<模板形参表声明><类声明>,并且类模板的成员函数都是模板函数


D.正确,定义时都必须通过完整的模板语法进行定义


习题3下列描述错误的是( )

A.编写与类型无关的通用代码,是代码复用的一种手段。模板是泛型编程的基础


B.函数模板是一个蓝图,它本身并不是函数,是编译器用使用方式产生特定具体类型函数的模具


C.模板分为函数模板和类模板


D. 模板类跟普通类以一样的,编译器对它的处理时一样的


选D


A.模板是代码复用的重要手段


B.函数模板不是一个具体函数,而是一个函数家族


C.目前涉及到的模板就两类,函数模板与类模板


D.模板类是一个家族,编译器的处理会分别进行两次编译,其处理过程跟普通类不一样


相关文章
|
1月前
|
存储 C++ UED
【实战指南】4步实现C++插件化编程,轻松实现功能定制与扩展
本文介绍了如何通过四步实现C++插件化编程,实现功能定制与扩展。主要内容包括引言、概述、需求分析、设计方案、详细设计、验证和总结。通过动态加载功能模块,实现软件的高度灵活性和可扩展性,支持快速定制和市场变化响应。具体步骤涉及配置文件构建、模块编译、动态库入口实现和主程序加载。验证部分展示了模块加载成功的日志和配置信息。总结中强调了插件化编程的优势及其在多个方面的应用。
257 66
|
1月前
|
安全 程序员 编译器
【实战经验】17个C++编程常见错误及其解决方案
想必不少程序员都有类似的经历:辛苦敲完项目代码,内心满是对作品品质的自信,然而当静态扫描工具登场时,却揭示出诸多隐藏的警告问题。为了让自己的编程之路更加顺畅,也为了持续精进技艺,我想借此机会汇总分享那些常被我们无意间忽视却又导致警告的编程小细节,以此作为对未来的自我警示和提升。
139 6
|
1月前
|
程序员 C++ 容器
在 C++中,realloc 函数返回 NULL 时,需要手动释放原来的内存吗?
在 C++ 中,当 realloc 函数返回 NULL 时,表示内存重新分配失败,但原内存块仍然有效,因此需要手动释放原来的内存,以避免内存泄漏。
|
1月前
|
存储 前端开发 C++
C++ 多线程之带返回值的线程处理函数
这篇文章介绍了在C++中使用`async`函数、`packaged_task`和`promise`三种方法来创建带返回值的线程处理函数。
48 6
|
1月前
|
C++
C++ 多线程之线程管理函数
这篇文章介绍了C++中多线程编程的几个关键函数,包括获取线程ID的`get_id()`,延时函数`sleep_for()`,线程让步函数`yield()`,以及阻塞线程直到指定时间的`sleep_until()`。
25 0
C++ 多线程之线程管理函数
|
1月前
|
编译器 C语言 C++
C++入门6——模板(泛型编程、函数模板、类模板)
C++入门6——模板(泛型编程、函数模板、类模板)
46 0
C++入门6——模板(泛型编程、函数模板、类模板)
|
2天前
|
存储 编译器 C语言
【c++丨STL】string类的使用
本文介绍了C++中`string`类的基本概念及其主要接口。`string`类在C++标准库中扮演着重要角色,它提供了比C语言中字符串处理函数更丰富、安全和便捷的功能。文章详细讲解了`string`类的构造函数、赋值运算符、容量管理接口、元素访问及遍历方法、字符串修改操作、字符串运算接口、常量成员和非成员函数等内容。通过实例演示了如何使用这些接口进行字符串的创建、修改、查找和比较等操作,帮助读者更好地理解和掌握`string`类的应用。
15 2
|
8天前
|
存储 编译器 C++
【c++】类和对象(下)(取地址运算符重载、深究构造函数、类型转换、static修饰成员、友元、内部类、匿名对象)
本文介绍了C++中类和对象的高级特性,包括取地址运算符重载、构造函数的初始化列表、类型转换、static修饰成员、友元、内部类及匿名对象等内容。文章详细解释了每个概念的使用方法和注意事项,帮助读者深入了解C++面向对象编程的核心机制。
33 5
|
14天前
|
存储 编译器 C++
【c++】类和对象(中)(构造函数、析构函数、拷贝构造、赋值重载)
本文深入探讨了C++类的默认成员函数,包括构造函数、析构函数、拷贝构造函数和赋值重载。构造函数用于对象的初始化,析构函数用于对象销毁时的资源清理,拷贝构造函数用于对象的拷贝,赋值重载用于已存在对象的赋值。文章详细介绍了每个函数的特点、使用方法及注意事项,并提供了代码示例。这些默认成员函数确保了资源的正确管理和对象状态的维护。
46 4
|
15天前
|
存储 编译器 Linux
【c++】类和对象(上)(类的定义格式、访问限定符、类域、类的实例化、对象的内存大小、this指针)
本文介绍了C++中的类和对象,包括类的概念、定义格式、访问限定符、类域、对象的创建及内存大小、以及this指针。通过示例代码详细解释了类的定义、成员函数和成员变量的作用,以及如何使用访问限定符控制成员的访问权限。此外,还讨论了对象的内存分配规则和this指针的使用场景,帮助读者深入理解面向对象编程的核心概念。
43 4