无公式理解反向传播算法之精髓

简介: 无公式理解反向传播算法之精髓

本篇为100天搞定机器学习之第37天,亦为3Blue1Brown《深度学习之反向传播算法》学习笔记。


640.png

上集提到我们要找到特定权重和偏置,从而使代价函数最小化,我们需要求得代价函数的负梯度,它告诉我们如何改变连线上的权重偏置,才能让代价下降的最快。反向传播算法是用来求这个复杂到爆的梯度的。


640.jpg


上一集中提到一点,13000维的梯度向量是难以想象的。换个思路,梯度向量每一项的大小,是在说代价函数对每个参数有多敏感。如下图,我们可以这样里理解,第一个权重对代价函数的影响是是第二个的32倍。


640.jpg


我们先不要管反向传播算法这一堆公式,当我们真正理解了这算法,这里的每一步就会无比清晰了。


640.jpg


我们来考虑一个还没有被训练好的网络。我们并不能直接改动这些激活值,只能改变权重和偏置值。但记住,我们想要输出层出现怎样的变动,还是有用的。我们希望图像的最后分类结果是2,我们期望第3个输出值变大,其余输出值变小,并且变动的大小应该与现在值和目标值之间的差成正比。举个例子,增大数字2神经元的激活值,就应该比减少数字8神经元的激活值来得重要,因为后者已经很接近它的目标了。


640.jpg


进一步,就来关注数字2这个神经元,想让它的激活值变大,而这个激活值是把前一层所有激活值的加权和加上偏置值。


要增加激活值,我们有3条路可以走,一增加偏置,二增加权重,或者三改变上一层的激活值。先来看如何调整权重,各个权重它们的影响力各不相同,连接前一层最亮的神经元的权重,影响力也最大,因为这些权重与大的激活值相乘。增大这几个权重,对最终代价函数造成的影响,就比增大连接黯淡神经元的权重所造成的影响,要大上好多倍。

640.jpg


请记住,说到梯度下降的时候,我们并不只看每个参数是增大还是变小,我们还看改变哪个参数的性价比最大。


640.jpg

第三个可以增加神经元激活值的方法是改变前一层的激活值,如果所有正权重链接的神经元更亮,所有负权重链接的神经元更暗的话,那么数字2的神经元就会更强烈的激发。我们也要依据对应权重的大小,对激活值做成比例的改变,我们并不能直接改变激活值,仅对最后一层来说,记住我们期待的变化也是有帮助的。


640.jpg


不过别忘了,从全局上看,只只不过是数字2的神经元所期待的变化,我们还需要最后一层其余的每个输出神经元,对于如何改变倒数第二层都有各自的想法。


640.jpg


我们会把数字2神经元的期待,和别的输出神经元的期待全部加起来,作为如何改变倒数第二层的指示。这些期待变化不仅是对应的权重的倍数,也是每个神经元激活值改变量的倍数。


640.jpg


这其实就是在实现反向传播的理念了,我们把所有期待的改变加起来,得到一串对倒数第二层改动的变化量,然后重复这个过程,改变倒数第二层神经元激活值的相关参数,一直循环到第一层。


我们对其他的训练样本,同样的过一遍反向传播,记录下每个样本想怎样修改权重和偏置,最后再去一个平均值。


640.jpg


这里一系列的权重偏置的平均微调大小,不严格地说,就是代价函数的负梯度,至少是其标量的倍数。神奇吧?


640.jpg


如果梯度下降的每一步都用上每一个训练样本计算的话,那么花费的时间就太长了。实际操作中,我们一般这样做:


首先把训练样本打乱,然后分成很多组minibatch,每个minibatch就当包含了100个训练样本好了。然后你算出这个minibatch下降的一步,这不是代价函数真正的梯度,然而每个minibatch会给一个不错的近似,计算量会减轻不少。


640.jpg

640.jpg



可以这样比喻:


沿代价函数表面下山,minibatch方法就像醉汉漫无目的的溜下山,但是速度很快。而之前的方法就像细致入微的人,事先准确的算好了下山的方向,然后谨小慎微的慢慢走。


640.jpg


这就是随机梯度下降


640.png


总结一下:反向传播算法算的是单个训练样本怎样改变权重和偏置,不仅说每个参数应该变大还是变小,还包括这些变化的比例是多大才能最快地降低cost。真正的梯度下降,对好几万个训练范例都这样操作,然后对这些变化取平均值,这样计算太慢了,我们要把所有样本分到各个minibatch中,计算每个minibatch梯度,调整参数,不断循环,最终收敛到cost function的局部最小值上。理解是一回事,如何表示出来又是另一回事,下一期,我们一起将反向传播算法用微积分的形式推导出来,敬请期待!

640.jpg



相关文章
|
2天前
|
机器学习/深度学习 算法
**反向传播算法**在多层神经网络训练中至关重要,它包括**前向传播**、**计算损失**、**反向传播误差**和**权重更新**。
【6月更文挑战第28天】**反向传播算法**在多层神经网络训练中至关重要,它包括**前向传播**、**计算损失**、**反向传播误差**和**权重更新**。数据从输入层流经隐藏层到输出层,计算预测值。接着,比较预测与真实值计算损失。然后,从输出层开始,利用链式法则反向计算误差和梯度,更新权重以减小损失。此过程迭代进行,直到损失收敛或达到训练次数,优化模型性能。反向传播实现了自动微分,使模型能适应训练数据并泛化到新数据。
10 2
|
8天前
|
机器学习/深度学习 人工智能 算法
反向传播算法
深度学习中,反向传播是神经网络训练的关键,它通过计算损失函数对参数的梯度来调整网络权重,减少预测与真实值的差距。该过程包括:1) 前向传播,输入数据通过网络;2) 计算损失,评估预测输出与实际值的偏差;3) 反向传播,利用链式法则计算所有参数的梯度;4) 参数更新,使用梯度下降法更新权重。这一循环不断迭代,提高模型性能。反向传播使得神经网络能适应复杂任务,推动了现代机器学习的发展。
|
8天前
|
机器学习/深度学习 算法 PyTorch
神经网络反向传播算法
神经网络中的反向传播算法是用于训练的关键步骤,通过计算损失函数梯度更新权重。它始于前向传播,即输入数据通过网络得出预测输出,接着计算预测与实际值的误差。反向传播利用链式法则从输出层开始逐层计算误差,更新每一层的权重和偏置。例如,一个包含隐藏层的网络,初始权重随机设定,通过反向传播计算损失函数梯度,如sigmoid激活函数的网络,调整权重以减小预测误差。在Python的PyTorch框架中,可以使用`nn.Linear`定义层,`optimizer`进行参数优化,通过`backward()`计算梯度,`step()`更新参数。
|
2月前
|
机器学习/深度学习 算法 网络架构
什么是神经网络学习中的反向传播算法?
什么是神经网络学习中的反向传播算法?
|
2月前
|
机器学习/深度学习 算法
大模型开发:解释反向传播算法是如何工作的。
反向传播算法是训练神经网络的常用方法,尤其适用于多层前馈网络。它包括前向传播、计算损失、反向传播和迭代过程。首先,输入数据通过网络层层传递至输出层,计算预测值。接着,比较实际输出与期望值,计算损失。然后,从输出层开始,利用链式法则反向计算误差和权重的梯度。通过梯度下降等优化算法更新权重和偏置,以降低损失。此过程反复进行,直到损失收敛或达到预设训练轮数,优化模型性能,实现对新数据的良好泛化。
|
2月前
|
机器学习/深度学习 算法
反向传播原理的梯度下降算法
反向传播原理的梯度下降算法
|
2月前
|
机器学习/深度学习 算法 数据挖掘
反向传播算法
反向传播算法
|
2月前
|
机器学习/深度学习 人工智能 算法
神经网络算法——反向传播 Back Propagation
神经网络算法——反向传播 Back Propagation
45 0
|
2月前
|
机器学习/深度学习 算法 关系型数据库
反向传播原理的反向传播算法
反向传播原理的反向传播算法
|
2月前
|
存储 算法
【编码狂想】LeetCode 字符串和数组篇:挑战算法精髓,深化程序设计基础
【编码狂想】LeetCode 字符串和数组篇:挑战算法精髓,深化程序设计基础
40 0