100天搞定机器学习|Day17-18 神奇的逻辑回归

简介: 100天搞定机器学习|Day17-18 神奇的逻辑回归

Day17,Avik-Jain开始在Coursera深度学习的专业课程,完成第1周和第2周内容以及学习课程中的逻辑回归、神经网络,并用Python实现一个神经网络。


Day4-6我们已经学习过逻辑回归模型。


但是当时并没有扩展性的深入探讨,毕竟这个模型十分简单易懂。其实模型之间是有关联的,比如Logistic Regression引出SVM回归模型。


首先,我们再回归一下Logistic Regression


逻辑回归进行分类的主要思想是:根据现有数据对分类边界线建立回归公式,以此进行分类。我们想要的函数应该是,能接受所有的输入然后预测出类别。例如,对于而分类问题,该函数应该返回0或1。


逻辑回归假设函数如下


640.png


它对θTX作了一个函数g变换,映射至0到1的范围之内,而函数g称为sigmoid function或者logistic function,函数图像如下图所示。

640.png


逻辑回归是用来得到样本属于某个分类的概率,当输入z等于0时,Sigmoid函数值为0.5。随着z的增大,对应的函数值趋近于1;随着z的减小,对应的函数值趋近于0。


然后,我们通过逻辑回归引出SVM


我们发现hθ(x)只与θTX有关,θTX>0,则hθ(x)>0.5.g(z)只不过是用来映射,真实的类别决定权还在θTX。模型达到的目标无非就是让训练数据中y=1的特征θTX>>0,而是y=0的特征θTX<<0。Logistic回归就是要学习得到θ,使得正例的特征远大于0,负例的特征远小于0,强调在全部训练实例上达到这个目标。



640.png


上图中间那条线是θTX=0,logistic回顾强调所有点尽可能地远离中间那条线,学习出的结果也就中间那条线。这样我们可以得出结论,我们更应该关心靠近中间分割线的点,让他们尽可能地远离中间线,而不是在所有点上达到最优。


然后,看看逻辑回归的代价函数

640.jpg


当y=1时,并将z=θTx带入其中, 损失函数图像进行少量修改就能得到SVM损失函数图像,取z=1的点作为分界点画一条和逻辑回归很接近的线性图像得到上图中玫红色的直线,称其为Cost1(z)。 y=0,类似地得到Cost0(z)

640.jpg


从 逻辑回归 处修改后得到的基本公式为:


640.jpg


因为人们在使用逻辑回归和支持向量机时遵循的规则不同,有些地方还需要修改 ,在上述式子中的损失部分和正则化部分都去掉 1/m 项

在逻辑回归中使用λ来平衡样本的损失函数项和正则化项,而在SVM中,使用C来平衡.


最终的SVM的表达式

640.png


在这里,当最小化代价函数,获得参数 θ 时,支持向量机所做的是它来直接预测 y 的值等于 1,还是等于 0。所以学习参数 θ 就是支持向量机假设函数的形式。

另:详细过程建议大家观看吴恩达课程原版机器学习公开课


神经网络又与逻辑回归什么关系呢?先说结论:


逻辑回归是没有隐藏层的神经网络


逻辑回归引出神经网络的过程,我认为李宏毅的机器学习课程最为巧妙。

首先Logistic回归是有局限性的,对于线性不可分的数据没有办法分类。


640.jpg

640.jpg


比如上面这种情况,就没有办法使用一条直线进行分类。


640.jpg


一个解决方法是可以通过转换特征空间方法解决异或问题,线性不可分的数据在特征转化后可以很好地被红色直线区分开。 但是不能总是通过依赖手工的方法来找到一个好的转换,这就违背了机器学习的本质。


640.jpg


so,Logistic回归可以看做是两层神经元,激活函数是Sigmoid函数的神经网络。左边两个Sigmoid函数作用是特征转换,右边作用是分类。


640.jpg


Logistic回归连接在一起就是深度学习的基本结构。

640.jpg

相关文章
|
6月前
|
机器学习/深度学习 人工智能 自然语言处理
机器学习之线性回归与逻辑回归【完整房价预测和鸢尾花分类代码解释】
机器学习之线性回归与逻辑回归【完整房价预测和鸢尾花分类代码解释】
|
1月前
|
机器学习/深度学习 算法 知识图谱
【机器学习】逻辑回归原理(极大似然估计,逻辑函数Sigmod函数模型详解!!!)
【机器学习】逻辑回归原理(极大似然估计,逻辑函数Sigmod函数模型详解!!!)
|
1月前
|
机器学习/深度学习 存储 自然语言处理
【机器学习】基于逻辑回归的分类预测
【机器学习】基于逻辑回归的分类预测
|
1月前
|
机器学习/深度学习 算法
【机器学习】逻辑回归介绍(逻辑回归应用场景,原理,损失及优化详解!!!)
【机器学习】逻辑回归介绍(逻辑回归应用场景,原理,损失及优化详解!!!)
|
6月前
|
机器学习/深度学习 数据采集 算法
Python用逻辑回归、决策树、SVM、XGBoost 算法机器学习预测用户信贷行为数据分析报告
Python用逻辑回归、决策树、SVM、XGBoost 算法机器学习预测用户信贷行为数据分析报告
|
3月前
|
机器学习/深度学习 人工智能 算法
【人工智能】机器学习、分类问题和逻辑回归的基本概念、步骤、特点以及多分类问题的处理方法
机器学习是人工智能的一个核心分支,它专注于开发算法,使计算机系统能够自动地从数据中学习并改进其性能,而无需进行明确的编程。这些算法能够识别数据中的模式,并利用这些模式来做出预测或决策。机器学习的主要应用领域包括自然语言处理、计算机视觉、推荐系统、金融预测、医疗诊断等。
59 1
|
3月前
|
机器学习/深度学习 算法
【机器学习】SVM面试题:简单介绍一下SVM?支持向量机SVM、逻辑回归LR、决策树DT的直观对比和理论对比,该如何选择?SVM为什么采用间隔最大化?为什么要将求解SVM的原始问题转换为其对偶问题?
支持向量机(SVM)的介绍,包括其基本概念、与逻辑回归(LR)和决策树(DT)的直观和理论对比,如何选择这些算法,SVM为何采用间隔最大化,求解SVM时为何转换为对偶问题,核函数的引入原因,以及SVM对缺失数据的敏感性。
71 3
|
3月前
|
机器学习/深度学习 算法
【机器学习】支持向量机SVM、逻辑回归LR、决策树DT的直观对比和理论对比,该如何选择(面试回答)?
文章对支持向量机(SVM)、逻辑回归(LR)和决策树(DT)进行了直观和理论上的对比,并提供了在选择这些算法时的考虑因素,包括模型复杂度、损失函数、数据量需求、对缺失值的敏感度等。
56 1
|
3月前
|
机器学习/深度学习
【机器学习】逻辑回归LR的推导及特性是什么,面试回答?
逻辑回归(LR)的推导和特性的详细解释,包括其作为二分类模型的基本原理、损失函数(对数损失函数),以及决策树的特性,如不需要先验假设、高效性、易解释性、对缺失值的不敏感性,以及对冗余属性的鲁棒性。
40 1
|
4月前
|
机器学习/深度学习 数据采集 人工智能