【KNN分类】基于模拟退火优化KNN、蝗虫算法优化KNN实现数据分类附matlab代码

简介: 【KNN分类】基于模拟退火优化KNN、蝗虫算法优化KNN实现数据分类附matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法  神经网络预测雷达通信 无线传感器

信号处理图像处理路径规划元胞自动机无人机 电力系统

⛄ 内容介绍

KNN(k Nearest Neighbor)算法是1种简单、有效、非参数的文本分类法,但缺点是样本相似度的计算量大,故不适用于有大量高维样本的文本。一方面,本文分析了KNN算法的优点和缺陷,采用了1种应用特征词提取和特征词聚合的方法来改进KNN算法在特征词提取方面的不足。另一方面,本文又深入研究了模拟退火算法思想,采用退火模拟思想的典型优化组方法和模拟退火算法原理来加快KNN算法的分类速度。最后,通过2种方法的加入改进了KNN分类算法。实验结果表明,本文提出的方法大大提高了分类算法的效率和性能。

⛄ 部分代码

load lymphography

%%

% preprocess data to remove Nan entries

for ii=1:size(Tdata,2)

   nanindex=isnan(Tdata(:,ii));

   Tdata(nanindex,:)=[];

end

labels=Tdata(:,end);                  %classes

attributesData=Tdata(:,1:end-1);      %wine data

% for ii=1:size(attributesData,2)       %normalize the data

%     attributesData(:,ii)=normalize(attributesData(:,ii));

% end

[rows,colms]=size(attributesData);  %size of data    

%% seprate the data into training and testing

[trainIdx,~,testIdx]=dividerand(rows,0.8,0,0.2);

trainData=attributesData(trainIdx,:);   %training data

testData=attributesData(testIdx,:);     %testing data

trainlabel=labels(trainIdx);            %training labels

testlabel=labels(testIdx);              %testing labels

%% KNN classification

Mdl = fitcknn(trainData,trainlabel,'NumNeighbors',5,'Standardize',1);

predictedLables_KNN=predict(Mdl,testData);

cp=classperf(testlabel,predictedLables_KNN);

err=cp.ErrorRate;

accuracy=cp.CorrectRate;

%% SA optimisation for feature selection

dim=size(attributesData,2);

lb=0;ub=1;

x0=round(rand(1,dim));

fun=@(x) objfun(x,trainData,testData,trainlabel,testlabel,dim);

options = optimoptions(@simulannealbnd,'MaxIterations',150,...

           'PlotFcn','saplotbestf');

[x,fval,exitflag,output]  = simulannealbnd(fun,x0,zeros(1,dim),ones(1,dim),options) ;

Target_pos_SA=round(x);

% final evaluation for GOA tuned selected features

[error_SA,accuracy_SA,predictedLables_SA]=finalEval(Target_pos_SA,trainData,testData,...

                                                                  trainlabel,testlabel);

⛄ 运行结果

⛄ 参考文献

[1]邓箴, 包宏. 用模拟退火改进的KNN分类算法[J]. 计算机与应用化学, 2010(3):5.2019), In press.

⛄ Matlab代码关注

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料


相关文章
|
10天前
|
传感器 机器学习/深度学习 算法
【使用 DSP 滤波器加速速度和位移】使用信号处理算法过滤加速度数据并将其转换为速度和位移研究(Matlab代码实现)
【使用 DSP 滤波器加速速度和位移】使用信号处理算法过滤加速度数据并将其转换为速度和位移研究(Matlab代码实现)
|
16天前
|
机器学习/深度学习 算法 调度
14种智能算法优化BP神经网络(14种方法)实现数据预测分类研究(Matlab代码实现)
14种智能算法优化BP神经网络(14种方法)实现数据预测分类研究(Matlab代码实现)
102 0
|
2月前
|
机器学习/深度学习 Dragonfly 人工智能
基于蜻蜓算法优化支持向量机(DA-SVM)的数据多特征分类预测研究(Matlab代码实现)
基于蜻蜓算法优化支持向量机(DA-SVM)的数据多特征分类预测研究(Matlab代码实现)
|
2月前
|
机器学习/深度学习 数据采集 传感器
【故障诊断】基于matlab BP神经网络电机数据特征提取与故障诊断研究(Matlab代码实现)
【故障诊断】基于matlab BP神经网络电机数据特征提取与故障诊断研究(Matlab代码实现)
|
16天前
|
传感器 机器学习/深度学习 算法
【室内导航通过视觉惯性数据融合】将用户携带的智能手机收集的惯性数据与手机相机获取的视觉信息进行融合研究(Matlab代码实现)
【室内导航通过视觉惯性数据融合】将用户携带的智能手机收集的惯性数据与手机相机获取的视觉信息进行融合研究(Matlab代码实现)
|
24天前
|
算法 数据挖掘 定位技术
基于密度的聚类算法能够在含有噪声的数据集中识别出任意形状和大小的簇(Matlab代码实现)
基于密度的聚类算法能够在含有噪声的数据集中识别出任意形状和大小的簇(Matlab代码实现)
|
28天前
|
传感器 算法 机器人
【IMU数据与GPS融合的预积分方法】基于流形的IMU预积分,用于高效的视觉惯性最大后验估计、SE3姿势区分为IMU(Matlab代码实现)
【IMU数据与GPS融合的预积分方法】基于流形的IMU预积分,用于高效的视觉惯性最大后验估计、SE3姿势区分为IMU(Matlab代码实现)
|
2月前
|
机器学习/深度学习 数据采集 运维
基于核密度估计Kernel Density Estimation, KDE的数据生成方法研究(Matlab代码实现)
基于核密度估计Kernel Density Estimation, KDE的数据生成方法研究(Matlab代码实现)
|
2月前
|
数据采集 编解码 算法
MATLAB|风力涡轮机雷达信号仿真+数据+文章
MATLAB|风力涡轮机雷达信号仿真+数据+文章
|
16天前
|
传感器 算法 定位技术
【GPS+INS在MAV导航上融合】基于间接卡尔曼滤波的IMU与GPS融合MATLAB仿真(IMU与GPS数据由仿真生成)
【GPS+INS在MAV导航上融合】基于间接卡尔曼滤波的IMU与GPS融合MATLAB仿真(IMU与GPS数据由仿真生成)

热门文章

最新文章