【KNN分类】基于模拟退火优化KNN、蝗虫算法优化KNN实现数据分类附matlab代码

简介: 【KNN分类】基于模拟退火优化KNN、蝗虫算法优化KNN实现数据分类附matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法  神经网络预测雷达通信 无线传感器

信号处理图像处理路径规划元胞自动机无人机 电力系统

⛄ 内容介绍

KNN(k Nearest Neighbor)算法是1种简单、有效、非参数的文本分类法,但缺点是样本相似度的计算量大,故不适用于有大量高维样本的文本。一方面,本文分析了KNN算法的优点和缺陷,采用了1种应用特征词提取和特征词聚合的方法来改进KNN算法在特征词提取方面的不足。另一方面,本文又深入研究了模拟退火算法思想,采用退火模拟思想的典型优化组方法和模拟退火算法原理来加快KNN算法的分类速度。最后,通过2种方法的加入改进了KNN分类算法。实验结果表明,本文提出的方法大大提高了分类算法的效率和性能。

⛄ 部分代码

load lymphography

%%

% preprocess data to remove Nan entries

for ii=1:size(Tdata,2)

   nanindex=isnan(Tdata(:,ii));

   Tdata(nanindex,:)=[];

end

labels=Tdata(:,end);                  %classes

attributesData=Tdata(:,1:end-1);      %wine data

% for ii=1:size(attributesData,2)       %normalize the data

%     attributesData(:,ii)=normalize(attributesData(:,ii));

% end

[rows,colms]=size(attributesData);  %size of data    

%% seprate the data into training and testing

[trainIdx,~,testIdx]=dividerand(rows,0.8,0,0.2);

trainData=attributesData(trainIdx,:);   %training data

testData=attributesData(testIdx,:);     %testing data

trainlabel=labels(trainIdx);            %training labels

testlabel=labels(testIdx);              %testing labels

%% KNN classification

Mdl = fitcknn(trainData,trainlabel,'NumNeighbors',5,'Standardize',1);

predictedLables_KNN=predict(Mdl,testData);

cp=classperf(testlabel,predictedLables_KNN);

err=cp.ErrorRate;

accuracy=cp.CorrectRate;

%% SA optimisation for feature selection

dim=size(attributesData,2);

lb=0;ub=1;

x0=round(rand(1,dim));

fun=@(x) objfun(x,trainData,testData,trainlabel,testlabel,dim);

options = optimoptions(@simulannealbnd,'MaxIterations',150,...

           'PlotFcn','saplotbestf');

[x,fval,exitflag,output]  = simulannealbnd(fun,x0,zeros(1,dim),ones(1,dim),options) ;

Target_pos_SA=round(x);

% final evaluation for GOA tuned selected features

[error_SA,accuracy_SA,predictedLables_SA]=finalEval(Target_pos_SA,trainData,testData,...

                                                                  trainlabel,testlabel);

⛄ 运行结果

⛄ 参考文献

[1]邓箴, 包宏. 用模拟退火改进的KNN分类算法[J]. 计算机与应用化学, 2010(3):5.2019), In press.

⛄ Matlab代码关注

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料


相关文章
|
1天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
103 80
|
22天前
|
算法
基于GA遗传算法的PID控制器参数优化matlab建模与仿真
本项目基于遗传算法(GA)优化PID控制器参数,通过空间状态方程构建控制对象,自定义GA的选择、交叉、变异过程,以提高PID控制性能。与使用通用GA工具箱相比,此方法更灵活、针对性强。MATLAB2022A环境下测试,展示了GA优化前后PID控制效果的显著差异。核心代码实现了遗传算法的迭代优化过程,最终通过适应度函数评估并选择了最优PID参数,显著提升了系统响应速度和稳定性。
|
20天前
|
算法
基于WOA鲸鱼优化的购售电收益与风险评估算法matlab仿真
本研究提出了一种基于鲸鱼优化算法(WOA)的购售电收益与风险评估算法。通过将售电公司购售电收益风险计算公式作为WOA的目标函数,经过迭代优化计算出最优购电策略。实验结果表明,在迭代次数超过10次后,风险价值收益优化值达到1715.1万元的最大值。WOA还确定了中长期市场、现货市场及可再生能源等不同市场的最优购电量,验证了算法的有效性。核心程序使用MATLAB2022a实现,通过多次迭代优化,实现了售电公司收益最大化和风险最小化的目标。
|
23天前
|
算法
通过matlab分别对比PSO,反向学习PSO,多策略改进反向学习PSO三种优化算法
本项目使用MATLAB2022A版本,对比分析了PSO、反向学习PSO及多策略改进反向学习PSO三种优化算法的性能,主要通过优化收敛曲线进行直观展示。核心代码实现了标准PSO算法流程,加入反向学习机制及多种改进策略,以提升算法跳出局部最优的能力,增强全局搜索效率。
|
20天前
|
算法
通过matlab对比遗传算法优化前后染色体的变化情况
该程序使用MATLAB2022A实现遗传算法优化染色体的过程,通过迭代选择、交叉和变异操作,提高染色体适应度,优化解的质量,同时保持种群多样性,避免局部最优。代码展示了算法的核心流程,包括适应度计算、选择、交叉、变异等步骤,并通过图表直观展示了优化前后染色体的变化情况。
|
23天前
|
算法
基于大爆炸优化算法的PID控制器参数寻优matlab仿真
本研究基于大爆炸优化算法对PID控制器参数进行寻优,并通过Matlab仿真对比优化前后PID控制效果。使用MATLAB2022a实现核心程序,展示了算法迭代过程及最优PID参数的求解。大爆炸优化算法通过模拟宇宙大爆炸和大收缩过程,在搜索空间中迭代寻找全局最优解,特别适用于PID参数优化,提升控制系统性能。
|
23天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-GRU网络的数据分类识别算法matlab仿真
本项目展示了使用MATLAB2022a实现的贝叶斯优化、CNN和GRU算法优化效果。优化前后对比显著,完整代码附带中文注释及操作视频。贝叶斯优化适用于黑盒函数,CNN用于时间序列特征提取,GRU改进了RNN的长序列处理能力。
|
1月前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
21天前
|
算法 决策智能
基于遗传优化算法的TSP问题求解matlab仿真
本项目使用遗传算法解决旅行商问题(TSP),目标是在四个城市间找到最短路径。算法通过编码、选择、交叉、变异等步骤,在MATLAB2022A上实现路径优化,最终输出最优路径及距离。
|
1月前
|
机器学习/深度学习 算法 调度
基于ACO蚁群优化的VRPSD问题求解matlab仿真,输出规划路径结果和满载率
基于ACO蚁群优化的VRPSD问题求解MATLAB仿真,输出ACO优化的收敛曲线、规划路径结果及每条路径的满载率。在MATLAB2022a版本中运行,展示了优化过程和最终路径规划结果。核心程序通过迭代搜索最优路径,更新信息素矩阵,确保找到满足客户需求且总行程成本最小的车辆调度方案。