VUE系列 ---- 网络模块axios(一 )

简介: VUE系列 ---- 网络模块axios(一 )

一、选择什么网络模块?


★传统的Ajax是基于XMLHttpRequest(XHR)    


☆自己封装的话比较麻烦,可能存在很多bug


★Jquery-Ajax是Jquery的一部分    


☆整个Vue是没有使用到Jquery的    


☆为了网络请求而去引入Jquery是不合理的  


 ☆Jquery的体积和Vuejs差不多


二、为什么选择axios


☆在浏览器中发送XMLHttpRequest请求      ☆在node.js中发送http请求       ☆支持Promise API        ☆拦截请求和响应                                         ☆转换请求和响应数据


三、axios请求方式


★请求方式    


☆axios(config)                             ☆axios.request(config)                 ☆axios.get(url[,config])      ☆axios.delete(url[,config])           ☆axios.head(url[,config])               ☆axios.post(url[,data[,config]])  ☆axios.put(url[,data[,config]])      ☆axios.patch(url[,data[,config]])


四、axios的安装使用


http://www.axios-js.com/zh-cn


安装:创建脚手架后,在终端输入Npm install axios;


配置:在main.js文件中引入学生管理系统接口文档

1.png

在main.js直接可以写调用接口:

1.png

1.png

相关文章
|
10天前
|
JavaScript
Vue中Axios网络请求封装-企业最常用封装模式
本教程介绍如何安装并配置 Axios 实例,包含请求与响应拦截器,实现自动携带 Token、错误提示及登录状态管理,适用于 Vue 项目。
27 1
|
7月前
|
机器学习/深度学习 计算机视觉
RT-DETR改进策略【Neck】| ASF-YOLO 注意力尺度序列融合模块改进颈部网络,提高小目标检测精度
RT-DETR改进策略【Neck】| ASF-YOLO 注意力尺度序列融合模块改进颈部网络,提高小目标检测精度
258 3
RT-DETR改进策略【Neck】| ASF-YOLO 注意力尺度序列融合模块改进颈部网络,提高小目标检测精度
|
7月前
|
机器学习/深度学习 计算机视觉 网络架构
RT-DETR改进策略【模型轻量化】| 替换骨干网络 CVPR-2024 StarNet,超级精简高效的轻量化模块
RT-DETR改进策略【模型轻量化】| 替换骨干网络 CVPR-2024 StarNet,超级精简高效的轻量化模块
632 63
RT-DETR改进策略【模型轻量化】| 替换骨干网络 CVPR-2024 StarNet,超级精简高效的轻量化模块
|
7月前
|
机器学习/深度学习 计算机视觉
RT-DETR改进策略【模型轻量化】| 替换骨干网络为 MobileViTv1高效的信息编码与融合模块,获取局部和全局信息
RT-DETR改进策略【模型轻量化】| 替换骨干网络为 MobileViTv1高效的信息编码与融合模块,获取局部和全局信息
379 62
RT-DETR改进策略【模型轻量化】| 替换骨干网络为 MobileViTv1高效的信息编码与融合模块,获取局部和全局信息
|
6月前
|
存储 人工智能 编解码
Deepseek 3FS解读与源码分析(2):网络通信模块分析
2025年2月28日,DeepSeek 正式开源其颠覆性文件系统Fire-Flyer 3FS(以下简称3FS),重新定义了分布式存储的性能边界。本文基于DeepSeek发表的技术报告与开源代码,深度解析 3FS 网络通信模块的核心设计及其对AI基础设施的革新意义。
Deepseek 3FS解读与源码分析(2):网络通信模块分析
|
7月前
|
机器学习/深度学习 计算机视觉
RT-DETR改进策略【Neck】| ECCV-2024 RCM 矩形自校准模块 优化颈部网络
RT-DETR改进策略【Neck】| ECCV-2024 RCM 矩形自校准模块 优化颈部网络
268 10
RT-DETR改进策略【Neck】| ECCV-2024 RCM 矩形自校准模块 优化颈部网络
|
7月前
|
机器学习/深度学习 计算机视觉
YOLOv11改进策略【Neck】| ASF-YOLO 注意力尺度序列融合模块改进颈部网络,提高小目标检测精度
YOLOv11改进策略【Neck】| ASF-YOLO 注意力尺度序列融合模块改进颈部网络,提高小目标检测精度
275 9
YOLOv11改进策略【Neck】| ASF-YOLO 注意力尺度序列融合模块改进颈部网络,提高小目标检测精度
|
7月前
|
机器学习/深度学习 计算机视觉
YOLOv11改进策略【Neck】| ECCV-2024 RCM 矩形自校准模块 二次创新C3k2 改进颈部网络
YOLOv11改进策略【Neck】| ECCV-2024 RCM 矩形自校准模块 二次创新C3k2 改进颈部网络
499 6
YOLOv11改进策略【Neck】| ECCV-2024 RCM 矩形自校准模块 二次创新C3k2 改进颈部网络
|
11月前
|
资源调度 JavaScript
|
JavaScript 前端开发
【Vue面试题二十五】、你了解axios的原理吗?有看过它的源码吗?
这篇文章主要讨论了axios的使用、原理以及源码分析。 文章中首先回顾了axios的基本用法,包括发送请求、请求拦截器和响应拦截器的使用,以及如何取消请求。接着,作者实现了一个简易版的axios,包括构造函数、请求方法、拦截器的实现等。最后,文章对axios的源码进行了分析,包括目录结构、核心文件axios.js的内容,以及axios实例化过程中的配置合并、拦截器的使用等。
【Vue面试题二十五】、你了解axios的原理吗?有看过它的源码吗?