VUE系列 --- 网络模块axios(三)

简介: VUE系列 --- 网络模块axios(三)

一、axios封装


1.创建network/request.js文件

配置request文件

1.png

config调用者传入的基础配置,url,methods

使用1.png

2.创建api/xxx.js文件

封装接口1.png

封装接口get

1.png

二、axios拦截器


在请求或响应被 `then` 或 `catch` 处理前拦截它们。 登录: 账号/密码 ===>调用登录接口 ====>如果成功,返回一个token(令牌) 获取用户信息在头部里面要携带token

1.png

1.png

如果你想在稍后移除拦截器,可以这样:

const myInterceptor = axios.interceptors.request.use(function () {/*...*/});
axios.interceptors.request.eject(myInterceptor);

可以为自定义 axios 实例添加拦截器

const instance = axios.create();
instance.interceptors.request.use(function () {/*...*/});
相关文章
|
3月前
|
机器学习/深度学习 计算机视觉
RT-DETR改进策略【Neck】| ASF-YOLO 注意力尺度序列融合模块改进颈部网络,提高小目标检测精度
RT-DETR改进策略【Neck】| ASF-YOLO 注意力尺度序列融合模块改进颈部网络,提高小目标检测精度
140 3
RT-DETR改进策略【Neck】| ASF-YOLO 注意力尺度序列融合模块改进颈部网络,提高小目标检测精度
|
3月前
|
机器学习/深度学习 计算机视觉 网络架构
RT-DETR改进策略【模型轻量化】| 替换骨干网络 CVPR-2024 StarNet,超级精简高效的轻量化模块
RT-DETR改进策略【模型轻量化】| 替换骨干网络 CVPR-2024 StarNet,超级精简高效的轻量化模块
322 63
RT-DETR改进策略【模型轻量化】| 替换骨干网络 CVPR-2024 StarNet,超级精简高效的轻量化模块
|
7月前
|
资源调度 JavaScript
|
3月前
|
机器学习/深度学习 计算机视觉
RT-DETR改进策略【模型轻量化】| 替换骨干网络为 MobileViTv1高效的信息编码与融合模块,获取局部和全局信息
RT-DETR改进策略【模型轻量化】| 替换骨干网络为 MobileViTv1高效的信息编码与融合模块,获取局部和全局信息
232 62
RT-DETR改进策略【模型轻量化】| 替换骨干网络为 MobileViTv1高效的信息编码与融合模块,获取局部和全局信息
|
2月前
|
存储 人工智能 编解码
Deepseek 3FS解读与源码分析(2):网络通信模块分析
2025年2月28日,DeepSeek 正式开源其颠覆性文件系统Fire-Flyer 3FS(以下简称3FS),重新定义了分布式存储的性能边界。本文基于DeepSeek发表的技术报告与开源代码,深度解析 3FS 网络通信模块的核心设计及其对AI基础设施的革新意义。
Deepseek 3FS解读与源码分析(2):网络通信模块分析
|
3月前
|
机器学习/深度学习 计算机视觉
RT-DETR改进策略【Neck】| ECCV-2024 RCM 矩形自校准模块 优化颈部网络
RT-DETR改进策略【Neck】| ECCV-2024 RCM 矩形自校准模块 优化颈部网络
125 10
RT-DETR改进策略【Neck】| ECCV-2024 RCM 矩形自校准模块 优化颈部网络
|
3月前
|
机器学习/深度学习 计算机视觉
YOLOv11改进策略【Neck】| ASF-YOLO 注意力尺度序列融合模块改进颈部网络,提高小目标检测精度
YOLOv11改进策略【Neck】| ASF-YOLO 注意力尺度序列融合模块改进颈部网络,提高小目标检测精度
162 9
YOLOv11改进策略【Neck】| ASF-YOLO 注意力尺度序列融合模块改进颈部网络,提高小目标检测精度
|
3月前
|
机器学习/深度学习 计算机视觉
YOLOv11改进策略【Neck】| ECCV-2024 RCM 矩形自校准模块 二次创新C3k2 改进颈部网络
YOLOv11改进策略【Neck】| ECCV-2024 RCM 矩形自校准模块 二次创新C3k2 改进颈部网络
130 6
YOLOv11改进策略【Neck】| ECCV-2024 RCM 矩形自校准模块 二次创新C3k2 改进颈部网络
|
3月前
|
机器学习/深度学习 计算机视觉
YOLOv11改进策略【模型轻量化】| 替换骨干网络为 MobileViTv1高效的信息编码与融合模块,获取局部和全局信息
YOLOv11改进策略【模型轻量化】| 替换骨干网络为 MobileViTv1高效的信息编码与融合模块,获取局部和全局信息
138 9
YOLOv11改进策略【模型轻量化】| 替换骨干网络为 MobileViTv1高效的信息编码与融合模块,获取局部和全局信息
|
3月前
|
机器学习/深度学习 计算机视觉 网络架构
YOLOv11改进策略【模型轻量化】| 替换骨干网络 CVPR-2024 StarNet,超级精简高效的轻量化模块
YOLOv11改进策略【模型轻量化】| 替换骨干网络 CVPR-2024 StarNet,超级精简高效的轻量化模块
248 19