MySQL关于Count你知道多少

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
云数据库 RDS PostgreSQL,集群系列 2核4GB
简介: count的含义:count() 是一个聚合函数,对于返回的结果集,一行行地判断,如果 count 函数的参数不是 NULL,累计值就加 1,否则不加。最后返回累计值。

前言
大家好,我是小郭,MySQL关于Count你知道多少

统计数据的需求在我们日常开发中是非常容易遇到了,MySQL也支持多种的计算的函数,

接下来我们来看一看他们之间有什么区别,以及他们是否存在一些坑。

count(*)、count(1)、count(id)的区别
count的含义:count() 是一个聚合函数,对于返回的结果集,一行行地判断,如果 count 函数的参数不是 NULL,累计值就加 1,否则不加。最后返回累计值。

count(字段)比较特殊,则表示返回满足条件的数据行里面,参数“字段”不为 NULL 的总个数

分析性能差别原则
server 层要什么就给什么;
InnoDB 只给必要的值;
现在的优化器只优化了 count(*) 的语义为“取行数”,其他“显而易见”的优化并没有做
例子:

count(主键 id) 来说,InnoDB 引擎会遍历整张表,把每一行的 id 值都取出来,返回给 server 层。server 层拿到 id 后,判断是不可能为空的,就按行累加。

count(1) 来说,InnoDB 引擎遍历整张表,但不取值。server 层对于返回的每一行,放一个数字“1”进去,判断是不可能为空的,按行累加。

count(字段),server要字段,就返回字段,如果字段为空,就不做统计,字段的值过大,都会造成效率低下。

效率排序
count(字段)<count(主键 id)<count(1)≈count(*)

为什么count(*)最快?
优化器做了工作,找到最小的数来遍历。

InnoDB 是索引组织表,主键索引树的叶子节点是数据,而普通索引树的叶子节点是主键值。所以,普通索引树比主键索引树小很多。对于 count(*) 这样的操作,遍历哪个索引树得到的结果逻辑上都是一样的。因此,MySQL 优化器会找到最小的那棵树来遍历。在保证逻辑正确的前提下,尽量减少扫描的数据量,是数据库系统设计的通用法则之一。

关于NULL的几个坑
// 数据中存在null值数据
select count(*) from audit_log a;
结果:1

select count(id) from audit_log a;
结果:0
复制代码
我们看到count的结果不一致,记录数应该是1,count(id)却等于0

这是因为count(字段)是不统计,字段值为null的值

所以在字段为非空字段的情况下,需要使用count(*)来解决这个问题。

count(*)小结
MyISAM 表虽然 count(*) 很快,但是不支持事务;
show table status 命令虽然返回很快,但是不准确;
InnoDB 表直接 count(*) 会遍历全表,虽然结果准确,但会导致性能问题。

相关实践学习
如何快速连接云数据库RDS MySQL
本场景介绍如何通过阿里云数据管理服务DMS快速连接云数据库RDS MySQL,然后进行数据表的CRUD操作。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助 &nbsp; &nbsp; 相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
相关文章
|
28天前
|
存储 缓存 关系型数据库
MySQL的count()方法慢
MySQL的 `COUNT()`方法在处理大数据量时可能会变慢,主要原因包括数据量大、缺乏合适的索引、InnoDB引擎的设计以及复杂的查询条件。通过创建合适的索引、使用覆盖索引、缓存机制、分区表和预计算等优化方案,可以显著提高 `COUNT()`方法的执行效率,确保数据库查询性能的提升。
656 12
|
1月前
|
缓存 NoSQL 关系型数据库
MySQL战记:Count( *)实现之谜与计数策略的选择
本文深入探讨了MySQL中`count(*)`的不同实现方式,特别是MyISAM和InnoDB引擎的区别,以及各种计数方法的性能比较。同时,文章分析了使用缓存系统(如Redis)与数据库保存计数的优劣,并强调了在高并发场景下保持数据一致性的挑战。
MySQL战记:Count( *)实现之谜与计数策略的选择
|
2月前
|
SQL 关系型数据库 MySQL
MySQL性能探究:count(*)与count(1)的性能对决
在MySQL数据库的性能优化中,对查询语句的细微差别有着深入的理解是非常重要的。`count(*)`和`count(1)`是两种常用的聚合函数,用于计算行数。在面试中,面试官经常会问到这两种函数的性能差异。本文将探讨`count(*)`与`count(1)`的性能对比,并整理十道经典的MySQL面试题,帮助你在面试中游刃有余。
111 3
|
2月前
|
关系型数据库 MySQL 索引
MySQL的group by与count(), *字段使用问题
正确使用 `GROUP BY`和 `COUNT()`函数是进行数据聚合查询的基础。通过理解它们的用法和常见问题,可以有效避免查询错误和性能问题。无论是在单列分组、多列分组还是结合其他聚合函数的场景中,掌握这些技巧和注意事项都能大大提升数据查询和分析的效率。
270 0
|
3月前
|
存储 关系型数据库 MySQL
深度剖析:MySQL聚合函数 count(expr) 如何工作?如何选择?
本文详细探讨了MySQL中count(expr)函数的不同形式及其执行效率,包括count(*)、count(1)、count(主键)、count(非主键)等。通过对InnoDB和MyISAM引擎的对比分析,解释了它们在不同场景下的实现原理及性能差异。文章还通过实例演示了事务隔离级别对统计结果的影响,并提供了源码分析和总结建议。适合希望深入了解MySQL统计函数的开发者阅读。
80 0
|
5月前
|
关系型数据库 MySQL
Mysql中count(1)、count(*)以及count(列)的区别
Mysql中count(1)、count(*)以及count(列)的区别
69 0
|
7月前
|
关系型数据库 MySQL 开发者
Mysql COUNT() 函数详解
【6月更文挑战第19天】Mysql COUNT() 函数详解,包括 COUNT() 的用法及 COUNT() 带条件查询的操作
|
6月前
|
SQL 数据库 关系型数据库
MySQL设计规约问题之为什么统计表中记录数时推荐使用COUNT(*)而不是COUNT(primary_key)或COUNT(1)
MySQL设计规约问题之为什么统计表中记录数时推荐使用COUNT(*)而不是COUNT(primary_key)或COUNT(1)
|
7月前
|
SQL 关系型数据库 MySQL
MySQL数据库——SQL优化(3/3)-limit 优化、count 优化、update 优化、SQL优化 小结
MySQL数据库——SQL优化(3/3)-limit 优化、count 优化、update 优化、SQL优化 小结
321 0
|
关系型数据库 MySQL
mysql统计数据表中同一字段不同状态的COUNT()语句
mysql统计数据表中同一字段不同状态的COUNT()语句
110 0