利用鸿蒙系统实现温湿度传感器的数据读取与显示

简介: 今天主要和大家聊一聊,如何使用鸿蒙系统去提取AHT20的温湿度传感器的数值,该传感器采用ADC位数为20Bit,具有体积小,精度高和成本低的优点。

  今天主要和大家聊一聊,如何使用鸿蒙系统去提取AHT20的温湿度传感器的数值,该传感器采用ADC位数为20Bit,具有体积小,精度高和成本低的优点。

5e76a08ae368690c7c7d009d47760ccd.png第一:温湿度传感器基本参数

8d4f5b094c95c6ce2989be2f51110826.png

管脚定义与参考电路

4e237a979b7944211a0f8cf3a730e1a9.png

d50270b133bb06afe171f6c8ba803c68.png

I2C时序特性----支持标准100Hz,高速400KHz

4be00d6478f20d7738a1bdf6bbdfb46b.png

d5750c2363af71c34d3fa610b0fd3f5a.png

第二:温度代码具体实现


    上面分析了,温湿度传感器的基本实现原理与方法,主要精力可以放在代码的具体实现上。

#include "aht20.h"
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include "wifiiot_i2c.h"
#include "wifiiot_errno.h"
#define AHT20_I2C_IDX WIFI_IOT_I2C_IDX_0
#define AHT20_STARTUP_TIME     20*1000 // 上电启动时间
#define AHT20_CALIBRATION_TIME 40*1000 // 初始化(校准)时间
#define AHT20_MEASURE_TIME     75*1000 // 测量时间
#define AHT20_DEVICE_ADDR   0x38
#define AHT20_READ_ADDR     ((0x38<<1)|0x1)
#define AHT20_WRITE_ADDR    ((0x38<<1)|0x0)
#define AHT20_CMD_CALIBRATION       0xBE // 初始化(校准)命令
#define AHT20_CMD_CALIBRATION_ARG0  0x08
#define AHT20_CMD_CALIBRATION_ARG1  0x00
/**
 * 传感器在采集时需要时间,主机发出测量指令(0xAC)后,延时75毫秒以上再读取转换后的数据并判断返回的状态位是否正常。
 * 若状态比特位[Bit7]为0代表数据可正常读取,为1时传感器为忙状态,主机需要等待数据处理完成。
 **/
#define AHT20_CMD_TRIGGER       0xAC // 触发测量命令
#define AHT20_CMD_TRIGGER_ARG0  0x33
#define AHT20_CMD_TRIGGER_ARG1  0x00
// 用于在无需关闭和再次打开电源的情况下,重新启动传感器系统,软复位所需时间不超过20 毫秒
#define AHT20_CMD_RESET      0xBA // 软复位命令
#define AHT20_CMD_STATUS     0x71 // 获取状态命令
/**
 * STATUS 命令回复:
 * 1. 初始化后触发测量之前,STATUS 只回复 1B 状态值;
 * 2. 触发测量之后,STATUS 回复6B:1B 状态值 + 2B 湿度 + 4b湿度 + 4b温度 + 2B 温度
 *      RH = Srh / 2^20 * 100%
 *      T  = St  / 2^20 * 200 - 50
 **/
#define AHT20_STATUS_BUSY_SHIFT 7       // bit[7] Busy indication
#define AHT20_STATUS_BUSY_MASK  (0x1<<AHT20_STATUS_BUSY_SHIFT)
#define AHT20_STATUS_BUSY(status) ((status & AHT20_STATUS_BUSY_MASK) >> AHT20_STATUS_BUSY_SHIFT)
#define AHT20_STATUS_MODE_SHIFT 5       // bit[6:5] Mode Status
#define AHT20_STATUS_MODE_MASK  (0x3<<AHT20_STATUS_MODE_SHIFT)
#define AHT20_STATUS_MODE(status) ((status & AHT20_STATUS_MODE_MASK) >> AHT20_STATUS_MODE_SHIFT)
                                        // bit[4] Reserved
#define AHT20_STATUS_CALI_SHIFT 3       // bit[3] CAL Enable
#define AHT20_STATUS_CALI_MASK  (0x1<<AHT20_STATUS_CALI_SHIFT)
#define AHT20_STATUS_CALI(status) ((status & AHT20_STATUS_CALI_MASK) >> AHT20_STATUS_CALI_SHIFT)
                                        // bit[2:0] Reserved
#define AHT20_STATUS_RESPONSE_MAX 6
#define AHT20_RESOLUTION            (1<<20)  // 2^20
#define AHT20_MAX_RETRY 10
static uint32_t AHT20_Read(uint8_t* buffer, uint32_t buffLen)
{
    WifiIotI2cData data = { 0 };
    data.receiveBuf = buffer;
    data.receiveLen = buffLen;
    uint32_t retval = I2cRead(AHT20_I2C_IDX, AHT20_READ_ADDR, &data);
    if (retval != WIFI_IOT_SUCCESS) {
        printf("I2cRead() failed, %0X!\n", retval);
        return retval;
    }
    return WIFI_IOT_SUCCESS;
}
static uint32_t AHT20_Write(uint8_t* buffer, uint32_t buffLen)
{
    WifiIotI2cData data = { 0 };
    data.sendBuf = buffer;
    data.sendLen = buffLen;
    uint32_t retval = I2cWrite(AHT20_I2C_IDX, AHT20_WRITE_ADDR, &data);
    if (retval != WIFI_IOT_SUCCESS) {
        printf("I2cWrite(%02X) failed, %0X!\n", buffer[0], retval);
        return retval;
    }
    return WIFI_IOT_SUCCESS;
}
// 发送获取状态命令
static uint32_t AHT20_StatusCommand(void)
{
    uint8_t statusCmd[] = { AHT20_CMD_STATUS };
    return AHT20_Write(statusCmd, sizeof(statusCmd));
}
// 发送软复位命令
static uint32_t AHT20_ResetCommand(void)
{
    uint8_t resetCmd[] = {AHT20_CMD_RESET};
    return AHT20_Write(resetCmd, sizeof(resetCmd));
}
// 发送初始化校准命令
static uint32_t AHT20_CalibrateCommand(void)
{
    uint8_t clibrateCmd[] = {AHT20_CMD_CALIBRATION, AHT20_CMD_CALIBRATION_ARG0, AHT20_CMD_CALIBRATION_ARG1};
    return AHT20_Write(clibrateCmd, sizeof(clibrateCmd));
}
// 读取温湿度值之前, 首先要看状态字的校准使能位Bit[3]是否为 1(通过发送0x71可以获取一个字节的状态字),
// 如果不为1,要发送0xBE命令(初始化),此命令参数有两个字节, 第一个字节为0x08,第二个字节为0x00。
uint32_t AHT20_Calibrate(void)
{
    uint32_t retval = 0;
    uint8_t buffer[AHT20_STATUS_RESPONSE_MAX];
    memset(&buffer, 0x0, sizeof(buffer));
    retval = AHT20_StatusCommand();
    if (retval != WIFI_IOT_SUCCESS) {
        return retval;
    }
    retval = AHT20_Read(buffer, sizeof(buffer));
    if (retval != WIFI_IOT_SUCCESS) {
        return retval;
    }
    if (AHT20_STATUS_BUSY(buffer[0]) || !AHT20_STATUS_CALI(buffer[0])) {
        retval = AHT20_ResetCommand();
        if (retval != WIFI_IOT_SUCCESS) {
            return retval;
        }
        usleep(AHT20_STARTUP_TIME);
        retval = AHT20_CalibrateCommand();
        usleep(AHT20_CALIBRATION_TIME);
        return retval;
    }
    return WIFI_IOT_SUCCESS;
}
// 发送 触发测量 命令,开始测量
uint32_t AHT20_StartMeasure(void)
{
    uint8_t triggerCmd[] = {AHT20_CMD_TRIGGER, AHT20_CMD_TRIGGER_ARG0, AHT20_CMD_TRIGGER_ARG1};
    return AHT20_Write(triggerCmd, sizeof(triggerCmd));
}
// 接收测量结果,拼接转换为标准值
uint32_t AHT20_GetMeasureResult(float* temp, float* humi)
{
    uint32_t retval = 0, i = 0;
    if (temp == NULL || humi == NULL) {
        return WIFI_IOT_FAILURE;
    }
    uint8_t buffer[AHT20_STATUS_RESPONSE_MAX];
    memset(&buffer, 0x0, sizeof(buffer));
    retval = AHT20_Read(buffer, sizeof(buffer));  // recv status command result
    if (retval != WIFI_IOT_SUCCESS) {
        return retval;
    }
    for (i = 0; AHT20_STATUS_BUSY(buffer[0]) && i < AHT20_MAX_RETRY; i++) {
        // printf("AHT20 device busy, retry %d/%d!\r\n", i, AHT20_MAX_RETRY);
        usleep(AHT20_MEASURE_TIME);
        retval = AHT20_Read(buffer, sizeof(buffer));  // recv status command result
        if (retval != WIFI_IOT_SUCCESS) {
            return retval;
        }
    }
    if (i >= AHT20_MAX_RETRY) {
        printf("AHT20 device always busy!\r\n");
        return WIFI_IOT_FAILURE;
    }
    uint32_t humiRaw = buffer[1];
    humiRaw = (humiRaw << 8) | buffer[2];
    humiRaw = (humiRaw << 4) | ((buffer[3] & 0xF0) >> 4);
    *humi = humiRaw / (float)AHT20_RESOLUTION * 100;
    uint32_t tempRaw = buffer[3] & 0x0F;
    tempRaw = (tempRaw << 8) | buffer[4];
    tempRaw = (tempRaw << 8) | buffer[5];
    *temp = tempRaw / (float)AHT20_RESOLUTION * 200 - 50;
    // printf("humi = %05X, %f, temp= %05X, %f\r\n", humiRaw, *humi, tempRaw, *temp);
    return WIFI_IOT_SUCCESS;
}

接下来,可以利用鸿蒙系统对温湿度传感器里面的温度数据进行读取,然后再将获取到的温湿度数据进行显示输出

#include "aht20.h"
#include <stdio.h>
#include <unistd.h>
#include "ohos_init.h"
#include "cmsis_os2.h"
#include "wifiiot_gpio.h"
#include "wifiiot_gpio_ex.h"
#include "wifiiot_i2c.h"
void Aht20TestTask(void* arg)
{
    (void) arg;
    uint32_t retval = 0;
    IoSetFunc(WIFI_IOT_IO_NAME_GPIO_13, WIFI_IOT_IO_FUNC_GPIO_13_I2C0_SDA);
    IoSetFunc(WIFI_IOT_IO_NAME_GPIO_14, WIFI_IOT_IO_FUNC_GPIO_14_I2C0_SCL);
    I2cInit(WIFI_IOT_I2C_IDX_0, 400*1000);
    retval = AHT20_Calibrate();
    printf("AHT20_Calibrate: %d\r\n", retval);
    while (1) {
        float temp = 0.0, humi = 0.0;
        retval = AHT20_StartMeasure();
        printf("AHT20_StartMeasure: %d\r\n", retval);
        retval = AHT20_GetMeasureResult(&temp, &humi);
        printf("AHT20_GetMeasureResult: %d, temp = %.2f, humi = %.2f\r\n", retval, temp, humi);
        sleep(1);
    }
}
void Aht20Test(void)
{
    osThreadAttr_t attr;
    attr.name = "Aht20Task";
    attr.attr_bits = 0U;
    attr.cb_mem = NULL;
    attr.cb_size = 0U;
    attr.stack_mem = NULL;
    attr.stack_size = 4096;
    attr.priority = osPriorityNormal;
    if (osThreadNew(Aht20TestTask, NULL, &attr) == NULL) {
        printf("[Aht20Test] Failed to create Aht20TestTask!\n");
    }
}
APP_FEATURE_INIT(Aht20Test);
目录
相关文章
|
4月前
|
定位技术 开发工具
【HarmonyOS】鸿蒙应用实现调用系统地图导航或路径规划
【HarmonyOS】鸿蒙应用实现调用系统地图导航或路径规划
197 5
【HarmonyOS】鸿蒙应用实现调用系统地图导航或路径规划
|
5月前
|
Linux 编译器 Android开发
鸿蒙系统被抹黑的深层解析:技术、商业与地缘政治的复杂博弈-优雅草卓伊凡
鸿蒙系统被抹黑的深层解析:技术、商业与地缘政治的复杂博弈-优雅草卓伊凡
258 1
鸿蒙系统被抹黑的深层解析:技术、商业与地缘政治的复杂博弈-优雅草卓伊凡
|
4月前
|
安全 开发工具 数据安全/隐私保护
HarmonyOS应用安全全攻略:从系统到代码的全面防护
本文全面解析HarmonyOS应用安全开发,涵盖系统到代码的防护策略。首先介绍HarmonyOS三层安全体系:系统安全层、开发工具层与应用生态层。接着详解设备与数据安全等级划分,提供分级加密实战代码,包括文件读写与HUKS高级加密案例。最后总结开发最佳实践,强调数据分类、最小权限、加密常态及传输安全保障,助你构建更安全的应用。保护用户数据不仅是功能需求,更是开发者责任!
348 0
|
2月前
|
移动开发 网络协议 小程序
鸿蒙NEXT即时通讯/IM系统RinbowTalk v2.4版发布,基于MobileIMSDK框架、ArkTS编写
RainbowTalk是一套基于开源即时通讯讯IM框架 MobileIMSDK 的产品级鸿蒙NEXT端IM系统。纯ArkTS编写、全新开发,没有套壳、也没走捷径,每一行代码都够“纯血”。与姊妹产品RainbowChat和RainbowChat-Web 技术同源,历经考验。
139 1
|
3月前
|
缓存 移动开发 网络协议
纯血鸿蒙NEXT即时通讯/IM系统:RinbowTalk正式发布,全源码、纯ArkTS编写
RainbowTalk是一套基于MobileIMSDK的产品级鸿蒙NEXT端IM系统,目前已正式发布。纯ArkTS、从零编写,无套壳、没走捷径,每一行代码都够“纯”(详见:《RainbowTalk详细介绍》)。 MobileIMSDK是一整套开源IM即时通讯框架,历经10年,超轻量级、高度提炼,一套API优雅支持 UDP 、TCP 、WebSocket 三种协议,支持 iOS、Android、H5、标准Java、小程序、Uniapp、鸿蒙NEXT,服务端基于Netty编写。
239 1
|
5月前
|
人工智能 监控 Java
一文搞清楚HarmonyOS NEXT中状态管理 V1 版本:父子组件数据传递装饰器的奇妙之旅
本文深入浅出地介绍了HarmonyOS NEXT开发中状态管理V1版本的两个核心装饰器:@Prop和@Link。@Prop如同单向传递的快递员,负责将数据从父组件传递到子组件,但子组件的修改不会影响父组件;@Link则像心灵感应的双胞胎,实现父组件与子组件间的数据双向同步。通过魔法按钮和能量水晶的生动示例,文章详细解析了两者的使用场景、参数特性及同步机制,并以浅拷贝和深拷贝为比喻,帮助开发者更好地理解数据传递中的细节。掌握这两位“信使”,能让组件间的协作更加高效可靠!
205 14
一文搞清楚HarmonyOS NEXT中状态管理 V1 版本:父子组件数据传递装饰器的奇妙之旅
|
5月前
|
人工智能 运维 监控
HarmonyOS NEXT~鸿蒙系统运维:全面解析与最佳实践
本书《HarmonyOS NEXT~鸿蒙系统运维:全面解析与最佳实践》深入探讨了鸿蒙系统的运维管理。从架构特点到实际操作,涵盖分布式能力、性能优化、安全维护及故障排查。内容包括设备管理、系统监控、安全管理等核心任务,提供常见问题解决方案与工具推荐。面对未来超级终端和AI赋能的挑战,运维人员需不断学习,以充分发挥鸿蒙的分布式优势,为用户带来流畅体验。
356 8
|
6月前
|
安全 Linux 测试技术
对鸿蒙 Next 系统“成熟论”的深度剖析-优雅草卓伊凡
对鸿蒙 Next 系统“成熟论”的深度剖析-优雅草卓伊凡
152 10
对鸿蒙 Next 系统“成熟论”的深度剖析-优雅草卓伊凡
|
4月前
|
开发工具 数据安全/隐私保护 开发者
打造鸿蒙系统中最好用的加载动画和提示弹窗
幽蓝君开发了鸿蒙平台的轻量级弹窗工具 yloadinghud,旨在实现简洁优雅的提示交互。无需在每个页面重复初始化,只需一行代码即可展示加载动画或提示弹窗。支持多种类型,如成功、失败提示及文字弹窗,且具备自动消失功能,使用便捷。项目已上传至 ohpm 仓库,欢迎搜索体验并提出宝贵建议。#三方SDK #工具效率
|
6月前
|
人工智能 物联网 Android开发
【03】优雅草星云物联网AI智控系统从0开发鸿蒙端适配-deveco studio-在lib目录新建自定义库UtilsLibrary,ComponentLibrary,CommonConstLibrary完成设置SettingsView.ets初始公共类书写-优雅草卓伊凡
【03】优雅草星云物联网AI智控系统从0开发鸿蒙端适配-deveco studio-在lib目录新建自定义库UtilsLibrary,ComponentLibrary,CommonConstLibrary完成设置SettingsView.ets初始公共类书写-优雅草卓伊凡
202 23
【03】优雅草星云物联网AI智控系统从0开发鸿蒙端适配-deveco studio-在lib目录新建自定义库UtilsLibrary,ComponentLibrary,CommonConstLibrary完成设置SettingsView.ets初始公共类书写-优雅草卓伊凡