1.1 隐藏层
多层感知机在单层神经网络的基础上引入了一到多个隐藏层(hidden layer)。隐藏层位于输入层和输出层之间。下图展示了一个多层感知机的神经网络图,它含有一个隐藏层,该层中有5个隐藏单元。
在上图所示的多层感知机中,输入和输出个数分别为4和3,中间的隐藏层中包含了5个隐藏单元(hidden unit)。由于输入层不涉及计算,上图中的多层感知机的层数为2。由图可见,隐藏层中的神经元和输入层中各个输入完全连接,输出层中的神经元和隐藏层中的各个神经元也完全连接。因此,多层感知机中的隐藏层和输出层都是全连接层。
1.2 激活函数
1.2.1 ReLU函数
ReLU(rectified linear unit)函数提供了一个很简单的非线性变换。给定元素x xx,该函数定义为
可以看出,ReLU函数只保留正数元素,并将负数元素清零。为了直观地观察这一非线性变换,我们先定义一个绘图函数xyplot。
%matplotlib inline import torch import numpy as np import matplotlib.pylab as plt import sys sys.path.append("..") import d2lzh_pytorch as d2l def xyplot(x_vals, y_vals, name): d2l.set_figsize(figsize=(5, 2.5)) d2l.plt.plot(x_vals.detach().numpy(), y_vals.detach().numpy()) d2l.plt.xlabel('x') d2l.plt.ylabel(name + '(x)')
我们接下来通过Tensor提供的relu函数来绘制ReLU函数。可以看到,该激活函数是一个两段线性函数。
x = torch.arange(-8.0, 8.0, 0.1, requires_grad=True) y = x.relu() xyplot(x, y, 'relu')
显然,当输入为负数时,ReLU函数的导数为0;当输入为正数时,ReLU函数的导数为1。尽管输入为0时ReLU函数不可导,但是我们可以取此处的导数为0。下面绘制ReLU函数的导数。
y.sum().backward() xyplot(x, x.grad, 'grad of relu')
1.2.2 sigmoid函数
sigmoid函数可以将元素的值变换到0和1之间:
sigmoid函数在早期的神经网络中较为普遍,但它目前逐渐被更简单的ReLU函数取代。在后面“循环神经网络”一章中我们会介绍如何利用它值域在0到1之间这一特性来控制信息在神经网络中的流动。下面绘制了sigmoid函数。当输入接近0时,sigmoid函数接近线性变换。
y = x.sigmoid() xyplot(x, y, 'sigmoid')
依据链式法则,sigmoid函数的导数
下面绘制了sigmoid函数的导数。当输入为0时,sigmoid函数的导数达到最大值0.25;当输入越偏离0时,sigmoid函数的导数越接近0。
x.grad.zero_() y.sum().backward() xyplot(x, x.grad, 'grad of sigmoid')
1.2.3 tanh函数
tanh(双曲正切)函数可以将元素的值变换到-1和1之间:
我们接着绘制tanh函数。当输入接近0时,tanh函数接近线性变换。虽然该函数的形状和sigmoid函数的形状很像,但tanh函数在坐标系的原点上对称。
y = x.tanh() xyplot(x, y, 'tanh')
依据链式法则,tanh函数的导数
下面绘制了tanh函数的导数。当输入为0时,tanh函数的导数达到最大值1;当输入越偏离0时,tanh函数的导数越接近0。
x.grad.zero_() y.sum().backward() xyplot(x, x.grad, 'grad of tanh')
1.3 多层感知机
小结
- 多层感知机在输出层与输入层之间加入了一个或多个全连接隐藏层,并通过激活函数对隐藏层输出进行变换。
- 常用的激活函数包括ReLU函数、sigmoid函数和tanh函数。