【从零开始学习深度学习】3. 基于pytorch手动实现一个线性回归模型并进行min--batch训练

本文涉及的产品
交互式建模 PAI-DSW,每月250计算时 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
模型训练 PAI-DLC,100CU*H 3个月
简介: 【从零开始学习深度学习】3. 基于pytorch手动实现一个线性回归模型并进行min--batch训练

1.1 线性回归简介


线性回归输出是一个连续值,因此适用于回归问题。回归问题在实际中很常见,如预测房屋价格、气温、销售额等连续值的问题。与回归问题不同,分类问题中模型的最终输出是一个离散值。我们所说的图像分类、垃圾邮件识别、疾病检测等输出为离散值的问题都属于分类问题的范畴。softmax回归则适用于分类问题。


由于线性回归和softmax回归都是单层神经网络,它们涉及的概念和技术同样适用于大多数的深度学习模型。我们首先以线性回归为例,介绍大多数深度学习模型的基本要素和表示方法。


1.1 线性回归的基本要素


我们以一个简单的房屋价格预测作为例子来解释线性回归的基本要素。这个应用的目标是预测一栋房子的售出价格(元)。我们知道这个价格取决于很多因素,如房屋状况、地段、市场行情等。为了简单起见,这里我们假设价格只取决于房屋状况的两个因素,即面积(平方米)和房龄(年)。接下来我们希望探索价格与这两个因素的具体关系。


1.1.1 模型定义

image.png


1.1.2 模型训练


接下来我们需要通过数据来寻找特定的模型参数值,使模型在数据上的误差尽可能小。这个过程叫作模型训练(model training)。下面我们介绍模型训练所涉及的3个要素。


(1) 训练数据


我们通常收集一系列的真实数据,例如多栋房屋的真实售出价格和它们对应的面积和房龄。我们希望在这个数据上面寻找模型参数来使模型的预测价格与真实价格的误差最小。在机器学习术语里,该数据集被称为训练数据集(training data set)或训练集(training set),一栋房屋被称为一个样本(sample),其真实售出价格叫作标签(label),用来预测标签的两个因素叫作特征(feature)。特征用来表征样本的特点。


image.png


(2) 损失函数


在模型训练中,我们需要衡量价格预测值与真实值之间的误差。通常我们会选取一个非负数作为误差,且数值越小表示误差越小。一个常用的选择是平方函数。它在评估索引为 i ii 的样本误差的表达式为


image.png

image.png

(3) 优化算法


当模型和损失函数形式较为简单时,上面的误差最小化问题的解可以直接用公式表达出来。这类解叫作解析解(analytical solution)。本节使用的线性回归和平方误差刚好属于这个范畴。然而,大多数深度学习模型并没有解析解,只能通过优化算法有限次迭代模型参数来尽可能降低损失函数的值。这类解叫作数值解(numerical solution)。


在求数值解的优化算法中,小批量随机梯度下降(mini-batch stochastic gradient descent)在深度学习中被广泛使用。它的算法很简单:先选取一组模型参数的初始值,如随机选取;接下来对参数进行多次迭代,使每次迭代都可能降低损失函数的值。在每次迭代中,先随机均匀采样一个由固定数目训练数据样本所组成的小批量(mini-batch)B \mathcal{B}B,然后求小批量中数据样本的平均损失有关模型参数的导数(梯度),最后用此结果与预先设定的一个正数的乘积作为模型参数在本次迭代的减小量。


在训练本节讨论的线性回归模型的过程中,模型的每个参数将作如下迭代:


image.png


在上式中,∣ B ∣ |\mathcal{B}|∣B∣ 代表每个小批量中的样本个数(批量大小,batch size),η \etaη 称作学习率(learning rate)并取正数。需要强调的是,这里的批量大小和学习率的值是人为设定的,并不是通过模型训练学出的,因此叫作超参数(hyperparameter)。我们通常所说的“调参”指的正是调节超参数,例如通过反复试错来找到超参数合适的值。在少数情况下,超参数也可以通过模型训练学出。


1.1.3 模型预测


image.png


1.2 线性回归的表示方法


我们已经阐述了线性回归的模型表达式、训练和预测。下面我们解释线性回归与神经网络的联系,以及线性回归的矢量计算表达式。


1.2.1 神经网络图


在深度学习中,我们可以使用神经网络图直观地表现模型结构。为了更清晰地展示线性回归作为神经网络的结构,图1.1使用神经网络图表示本节中介绍的线性回归模型。神经网络图隐去了模型参数权重和偏差。

594299c9c3b649ee86da77efee031cd5.png

                 图1.1 线性回归是一个单层神经网络


在图1.1所示的神经网络中,输入分别为 $x_1$ 和 $x_2$,因此输入层的输入个数为2。`输入个数也叫特征数或特征向量维度`。图1.1中网络的输出为 $o$,输出层的输出个数为1。需要注意的是,我们直接将图1.1中神经网络的输出 $o$ 作为线性回归的输出,即 $\hat{y} = o$。由于输入层并不涉及计算,按照惯例,图1.1所示的神经网络的层数为1。所以,线性回归是一个单层神经网络。输出层中负责计算 $o$ 的单元又叫`神经元`。在线性回归中,$o$ 的计算依赖于 $x_1$ 和 $x_2$。也就是说,输出层中的神经元和输入层中各个输入完全连接。因此,这里的输出层又叫`全连接层(fully-connected layer)或稠密层(dense layer)`。


1.2.2 矢量计算表达式


在模型训练或预测时,我们常常会同时处理多个数据样本并用到矢量计算。在介绍线性回归的矢量计算表达式之前,让我们先考虑对两个向量相加的两种方法。


下面先定义两个1000维的向量。


import torch
from time import time
a = torch.ones(1000)
b = torch.ones(1000)


向量相加的一种方法是,将这两个向量按元素逐一做标量加法。


start = time()
c = torch.zeros(1000)
for i in range(1000):
    c[i] = a[i] + b[i]
print(time() - start)


输出:


0.02039504051208496
• 1


向量相加的另一种方法是,将这两个向量直接做矢量加法(向量对应元素相加)。


start = time()
d = a + b
print(time() - start)


输出:


0.0008330345153808594
• 1


结果很明显,后者比前者更省时。因此,我们应该尽可能采用矢量计算,以提升计算效率。


让我们再次回到本节的房价预测问题。如果我们对训练数据集里的3个房屋样本(索引分别为1、2和3)逐一预测价格,将得到



image.png


a = torch.ones(3)
b = 10
print(a + b)


输出:


tensor([11., 11., 11.])

image.png


2.2 线性回归的从零开始实现


在了解了线性回归的背景知识之后,现在我们可以动手实现它了。尽管强大的深度学习框架可以减少大量重复性工作,但若过于依赖它提供的便利,会导致我们很难深入理解深度学习是如何工作的。因此,本节将介绍如何只利用Tensor和autograd来实现一个线性回归的训练。


首先,导入本节中实验所需的包或模块,其中的matplotlib包可用于作图,且设置成嵌入显示。


%matplotlib inline
import torch
from IPython import display
from matplotlib import pyplot as plt
import numpy as np
import random


2.2.1 生成数据集


image.png


num_inputs = 2
num_examples = 1000
true_w = [2, -3.4]
true_b = 4.2
features = torch.randn(num_examples, num_inputs,
                       dtype=torch.float32)
labels = true_w[0] * features[:, 0] + true_w[1] * features[:, 1] + true_b
labels += torch.tensor(np.random.normal(0, 0.01, size=labels.size()),
                       dtype=torch.float32)


image.png


def use_svg_display():
    # 用矢量图显示
    display.set_matplotlib_formats('svg')
def set_figsize(figsize=(3.5, 2.5)):
    use_svg_display()
    # 设置图的尺寸
    plt.rcParams['figure.figsize'] = figsize
# # 在../d2lzh_pytorch里面添加上面两个函数后就可以这样导入
# import sys
# sys.path.append("..")
# from d2lzh_pytorch import * 
set_figsize()
plt.scatter(features[:, 1].numpy(), labels.numpy(), 1);

1a72e457dcbd465d936d54adeeeea2a7.png

2.2.2 读取数据


在训练模型的时候,我们需要遍历数据集并不断读取小批量数据样本。这里我们定义一个函数:它每次返回batch_size(批量大小)个随机样本的特征和标签。


def data_iter(batch_size, features, labels):
    num_examples = len(features)
    indices = list(range(num_examples))
    random.shuffle(indices)  # 样本的读取顺序是随机的
    for i in range(0, num_examples, batch_size):
        j = torch.LongTensor(indices[i: min(i + batch_size, num_examples)]) # 最后一次可能不足一个batch
        # 参数0表示以行为标准进行选择
        yield  features.index_select(0, j), labels.index_select(0, j)


让我们读取第一个小批量数据样本并打印。每个批量的特征形状为(10, 2),分别对应批量大小和输入个数;标签形状为批量大小。


batch_size = 10
for X, y in data_iter(batch_size, features, labels):
    print(X, y)
    break

输出:

tensor([[-1.4239, -1.3788],
        [ 0.0275,  1.3550],
        [ 0.7616, -1.1384],
        [ 0.2967, -0.1162],
        [ 0.0822,  2.0826],
        [-0.6343, -0.7222],
        [ 0.4282,  0.0235],
        [ 1.4056,  0.3506],
        [-0.6496, -0.5202],
        [-0.3969, -0.9951]]) 
 tensor([ 6.0394, -0.3365,  9.5882,  5.1810, -2.7355,  5.3873,  4.9827,  5.7962,
         4.6727,  6.7921])

2.2.3 初始化模型参数


我们将权重初始化成均值为0、标准差为0.01的正态随机数,偏差则初始化成0。


w = torch.tensor(np.random.normal(0, 0.01, (num_inputs, 1)), dtype=torch.float32)
b = torch.zeros(1, dtype=torch.float32)


之后的模型训练中,需要对这些参数求梯度来迭代参数的值,因此我们要让它们的requires_grad=True


w.requires_grad_(requires_grad=True)
b.requires_grad_(requires_grad=True) 


2.2.4 定义模型


下面是线性回归的矢量计算表达式的实现。我们使用mm函数做矩阵乘法。


def linreg(X, w, b):  
    return torch.mm(X, w) + b


2.2.5 定义损失函数


我们使用上一节描述的平方损失来定义线性回归的损失函数。在实现中,我们需要把真实值y变形成预测值y_hat的形状。以下函数返回的结果也将和y_hat的形状相同。


def squared_loss(y_hat, y):  
    # 注意这里返回的是向量
    return (y_hat - y.view(y_hat.size())) ** 2 / 2


2.2.6 定义优化算法


以下的sgd函数实现了上一节中介绍的小批量随机梯度下降算法。它通过不断迭代模型参数来优化损失函数。这里自动求梯度模块计算得来的梯度是一个批量样本的梯度和。我们将它除以批量大小来得到平均值。

def sgd(params, lr, batch_size): 
    for param in params:
        param.data -= lr * param.grad / batch_size # 注意这里更改param时用的param.data

2.2.7 训练模型


在训练中,我们将多次迭代模型参数。在每次迭代中,我们根据当前读取的小批量数据样本(特征X和标签y),通过调用反向函数backward计算小批量随机梯度,并调用优化算法sgd迭代模型参数。由于我们之前设批量大小batch_size为10,每个小批量的损失l的形状为(10, 1)。回忆一下自动求梯度一节。由于变量l并不是一个标量,所以我们可以调用.sum()将其求和得到一个标量,再运行l.backward()得到该变量有关模型参数的梯度。注意在每次更新完参数后不要忘了将参数的梯度清零。


在一个迭代周期(epoch)中,我们将完整遍历一遍data_iter函数,并对训练数据集中所有样本都使用一次(假设样本数能够被批量大小整除)。这里的迭代周期个数num_epochs和学习率lr都是超参数,分别设3和0.03。在实践中,大多超参数都需要通过反复试错来不断调节。虽然迭代周期数设得越大模型可能越有效,但是训练时间可能过长。而有关学习率对模型的影响,我们会在后面“优化算法”一章中详细介绍。


lr = 0.03
num_epochs = 3
net = linreg
loss = squared_loss
for epoch in range(num_epochs):  # 训练模型一共需要num_epochs个迭代周期
    # 在每一个迭代周期中,会使用训练数据集中所有样本一次(假设样本数能够被批量大小整除)。X
    # 和y分别是小批量样本的特征和标签
    for X, y in data_iter(batch_size, features, labels):
        l = loss(net(X, w, b), y).sum()  # l是有关小批量X和y的损失
        l.backward()  # 小批量的损失对模型参数求梯度
        sgd([w, b], lr, batch_size)  # 使用小批量随机梯度下降迭代模型参数
        # 不要忘了梯度清零
        w.grad.data.zero_()
        b.grad.data.zero_()
    # 计算第一个迭代周期的损失
    train_l = loss(net(features, w, b), labels)
    print('epoch %d, loss %f' % (epoch + 1, train_l.mean().item()))


输出:


epoch 1, loss 0.028127
epoch 2, loss 0.000095
epoch 3, loss 0.000050
• 1
• 2
• 3


训练完成后,我们可以比较学到的参数和用来生成训练集的真实参数。它们应该很接近。


print(true_w, '\n', w)
print(true_b, '\n', b)


输出:


[2, -3.4]   
 tensor([[ 1.9998],
        [-3.3998]], requires_grad=True)
4.2 
 tensor([4.2001], requires_grad=True)


小结


  • 可以看出,仅使用Tensorautograd模块就可以很容易地实现一个模型。接下来,会在此基础上描述更多深度学习模型,并介绍怎样使用更简洁的代码(见下一节)来实现它们。


相关文章
|
2月前
|
机器学习/深度学习 数据采集 人工智能
PyTorch学习实战:AI从数学基础到模型优化全流程精解
本文系统讲解人工智能、机器学习与深度学习的层级关系,涵盖PyTorch环境配置、张量操作、数据预处理、神经网络基础及模型训练全流程,结合数学原理与代码实践,深入浅出地介绍激活函数、反向传播等核心概念,助力快速入门深度学习。
160 1
|
4月前
|
机器学习/深度学习 PyTorch 测试技术
从训练到推理:Intel Extension for PyTorch混合精度优化完整指南
PyTorch作为主流深度学习框架,凭借动态计算图和异构计算支持,广泛应用于视觉与自然语言处理。Intel Extension for PyTorch针对Intel硬件深度优化,尤其在GPU上通过自动混合精度(AMP)提升训练与推理性能。本文以ResNet-50在CIFAR-10上的实验为例,详解如何利用该扩展实现高效深度学习优化。
250 0
|
1月前
|
边缘计算 人工智能 PyTorch
130_知识蒸馏技术:温度参数与损失函数设计 - 教师-学生模型的优化策略与PyTorch实现
随着大型语言模型(LLM)的规模不断增长,部署这些模型面临着巨大的计算和资源挑战。以DeepSeek-R1为例,其671B参数的规模即使经过INT4量化后,仍需要至少6张高端GPU才能运行,这对于大多数中小型企业和研究机构来说成本过高。知识蒸馏作为一种有效的模型压缩技术,通过将大型教师模型的知识迁移到小型学生模型中,在显著降低模型复杂度的同时保留核心性能,成为解决这一问题的关键技术之一。
|
2月前
|
机器学习/深度学习 存储 PyTorch
Neural ODE原理与PyTorch实现:深度学习模型的自适应深度调节
Neural ODE将神经网络与微分方程结合,用连续思维建模数据演化,突破传统离散层的限制,实现自适应深度与高效连续学习。
120 3
Neural ODE原理与PyTorch实现:深度学习模型的自适应深度调节
|
3月前
|
PyTorch 算法框架/工具 异构计算
PyTorch 2.0性能优化实战:4种常见代码错误严重拖慢模型
我们将深入探讨图中断(graph breaks)和多图问题对性能的负面影响,并分析PyTorch模型开发中应当避免的常见错误模式。
222 9
|
5月前
|
机器学习/深度学习 存储 PyTorch
PyTorch + MLFlow 实战:从零构建可追踪的深度学习模型训练系统
本文通过使用 Kaggle 数据集训练情感分析模型的实例,详细演示了如何将 PyTorch 与 MLFlow 进行深度集成,实现完整的实验跟踪、模型记录和结果可复现性管理。文章将系统性地介绍训练代码的核心组件,展示指标和工件的记录方法,并提供 MLFlow UI 的详细界面截图。
236 2
PyTorch + MLFlow 实战:从零构建可追踪的深度学习模型训练系统
|
4月前
|
机器学习/深度学习 数据可视化 PyTorch
Flow Matching生成模型:从理论基础到Pytorch代码实现
本文将系统阐述Flow Matching的完整实现过程,包括数学理论推导、模型架构设计、训练流程构建以及速度场学习等关键组件。通过本文的学习,读者将掌握Flow Matching的核心原理,获得一个完整的PyTorch实现,并对生成模型在噪声调度和分数函数之外的发展方向有更深入的理解。
1664 0
Flow Matching生成模型:从理论基础到Pytorch代码实现
|
6月前
|
机器学习/深度学习 PyTorch API
PyTorch量化感知训练技术:模型压缩与高精度边缘部署实践
本文深入探讨神经网络模型量化技术,重点讲解训练后量化(PTQ)与量化感知训练(QAT)两种主流方法。PTQ通过校准数据集确定量化参数,快速实现模型压缩,但精度损失较大;QAT在训练中引入伪量化操作,使模型适应低精度环境,显著提升量化后性能。文章结合PyTorch实现细节,介绍Eager模式、FX图模式及PyTorch 2导出量化等工具,并分享大语言模型Int4/Int8混合精度实践。最后总结量化最佳策略,包括逐通道量化、混合精度设置及目标硬件适配,助力高效部署深度学习模型。
902 21
PyTorch量化感知训练技术:模型压缩与高精度边缘部署实践
|
8月前
|
机器学习/深度学习 JavaScript PyTorch
9个主流GAN损失函数的数学原理和Pytorch代码实现:从经典模型到现代变体
生成对抗网络(GAN)的训练效果高度依赖于损失函数的选择。本文介绍了经典GAN损失函数理论,并用PyTorch实现多种变体,包括原始GAN、LS-GAN、WGAN及WGAN-GP等。通过分析其原理与优劣,如LS-GAN提升训练稳定性、WGAN-GP改善图像质量,展示了不同场景下损失函数的设计思路。代码实现覆盖生成器与判别器的核心逻辑,为实际应用提供了重要参考。未来可探索组合优化与自适应设计以提升性能。
647 7
9个主流GAN损失函数的数学原理和Pytorch代码实现:从经典模型到现代变体
|
5月前
|
机器学习/深度学习 PyTorch 算法框架/工具
提升模型泛化能力:PyTorch的L1、L2、ElasticNet正则化技术深度解析与代码实现
本文将深入探讨L1、L2和ElasticNet正则化技术,重点关注其在PyTorch框架中的具体实现。关于这些技术的理论基础,建议读者参考相关理论文献以获得更深入的理解。
162 4
提升模型泛化能力:PyTorch的L1、L2、ElasticNet正则化技术深度解析与代码实现

热门文章

最新文章

推荐镜像

更多