【从零开始学习深度学习】3. 基于pytorch手动实现一个线性回归模型并进行min--batch训练

本文涉及的产品
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
模型训练 PAI-DLC,5000CU*H 3个月
交互式建模 PAI-DSW,每月250计算时 3个月
简介: 【从零开始学习深度学习】3. 基于pytorch手动实现一个线性回归模型并进行min--batch训练

1.1 线性回归简介


线性回归输出是一个连续值,因此适用于回归问题。回归问题在实际中很常见,如预测房屋价格、气温、销售额等连续值的问题。与回归问题不同,分类问题中模型的最终输出是一个离散值。我们所说的图像分类、垃圾邮件识别、疾病检测等输出为离散值的问题都属于分类问题的范畴。softmax回归则适用于分类问题。


由于线性回归和softmax回归都是单层神经网络,它们涉及的概念和技术同样适用于大多数的深度学习模型。我们首先以线性回归为例,介绍大多数深度学习模型的基本要素和表示方法。


1.1 线性回归的基本要素


我们以一个简单的房屋价格预测作为例子来解释线性回归的基本要素。这个应用的目标是预测一栋房子的售出价格(元)。我们知道这个价格取决于很多因素,如房屋状况、地段、市场行情等。为了简单起见,这里我们假设价格只取决于房屋状况的两个因素,即面积(平方米)和房龄(年)。接下来我们希望探索价格与这两个因素的具体关系。


1.1.1 模型定义

image.png


1.1.2 模型训练


接下来我们需要通过数据来寻找特定的模型参数值,使模型在数据上的误差尽可能小。这个过程叫作模型训练(model training)。下面我们介绍模型训练所涉及的3个要素。


(1) 训练数据


我们通常收集一系列的真实数据,例如多栋房屋的真实售出价格和它们对应的面积和房龄。我们希望在这个数据上面寻找模型参数来使模型的预测价格与真实价格的误差最小。在机器学习术语里,该数据集被称为训练数据集(training data set)或训练集(training set),一栋房屋被称为一个样本(sample),其真实售出价格叫作标签(label),用来预测标签的两个因素叫作特征(feature)。特征用来表征样本的特点。


image.png


(2) 损失函数


在模型训练中,我们需要衡量价格预测值与真实值之间的误差。通常我们会选取一个非负数作为误差,且数值越小表示误差越小。一个常用的选择是平方函数。它在评估索引为 i ii 的样本误差的表达式为


image.png

image.png

(3) 优化算法


当模型和损失函数形式较为简单时,上面的误差最小化问题的解可以直接用公式表达出来。这类解叫作解析解(analytical solution)。本节使用的线性回归和平方误差刚好属于这个范畴。然而,大多数深度学习模型并没有解析解,只能通过优化算法有限次迭代模型参数来尽可能降低损失函数的值。这类解叫作数值解(numerical solution)。


在求数值解的优化算法中,小批量随机梯度下降(mini-batch stochastic gradient descent)在深度学习中被广泛使用。它的算法很简单:先选取一组模型参数的初始值,如随机选取;接下来对参数进行多次迭代,使每次迭代都可能降低损失函数的值。在每次迭代中,先随机均匀采样一个由固定数目训练数据样本所组成的小批量(mini-batch)B \mathcal{B}B,然后求小批量中数据样本的平均损失有关模型参数的导数(梯度),最后用此结果与预先设定的一个正数的乘积作为模型参数在本次迭代的减小量。


在训练本节讨论的线性回归模型的过程中,模型的每个参数将作如下迭代:


image.png


在上式中,∣ B ∣ |\mathcal{B}|∣B∣ 代表每个小批量中的样本个数(批量大小,batch size),η \etaη 称作学习率(learning rate)并取正数。需要强调的是,这里的批量大小和学习率的值是人为设定的,并不是通过模型训练学出的,因此叫作超参数(hyperparameter)。我们通常所说的“调参”指的正是调节超参数,例如通过反复试错来找到超参数合适的值。在少数情况下,超参数也可以通过模型训练学出。


1.1.3 模型预测


image.png


1.2 线性回归的表示方法


我们已经阐述了线性回归的模型表达式、训练和预测。下面我们解释线性回归与神经网络的联系,以及线性回归的矢量计算表达式。


1.2.1 神经网络图


在深度学习中,我们可以使用神经网络图直观地表现模型结构。为了更清晰地展示线性回归作为神经网络的结构,图1.1使用神经网络图表示本节中介绍的线性回归模型。神经网络图隐去了模型参数权重和偏差。

594299c9c3b649ee86da77efee031cd5.png

                 图1.1 线性回归是一个单层神经网络


在图1.1所示的神经网络中,输入分别为 $x_1$ 和 $x_2$,因此输入层的输入个数为2。`输入个数也叫特征数或特征向量维度`。图1.1中网络的输出为 $o$,输出层的输出个数为1。需要注意的是,我们直接将图1.1中神经网络的输出 $o$ 作为线性回归的输出,即 $\hat{y} = o$。由于输入层并不涉及计算,按照惯例,图1.1所示的神经网络的层数为1。所以,线性回归是一个单层神经网络。输出层中负责计算 $o$ 的单元又叫`神经元`。在线性回归中,$o$ 的计算依赖于 $x_1$ 和 $x_2$。也就是说,输出层中的神经元和输入层中各个输入完全连接。因此,这里的输出层又叫`全连接层(fully-connected layer)或稠密层(dense layer)`。


1.2.2 矢量计算表达式


在模型训练或预测时,我们常常会同时处理多个数据样本并用到矢量计算。在介绍线性回归的矢量计算表达式之前,让我们先考虑对两个向量相加的两种方法。


下面先定义两个1000维的向量。


import torch
from time import time
a = torch.ones(1000)
b = torch.ones(1000)


向量相加的一种方法是,将这两个向量按元素逐一做标量加法。


start = time()
c = torch.zeros(1000)
for i in range(1000):
    c[i] = a[i] + b[i]
print(time() - start)


输出:


0.02039504051208496
• 1


向量相加的另一种方法是,将这两个向量直接做矢量加法(向量对应元素相加)。


start = time()
d = a + b
print(time() - start)


输出:


0.0008330345153808594
• 1


结果很明显,后者比前者更省时。因此,我们应该尽可能采用矢量计算,以提升计算效率。


让我们再次回到本节的房价预测问题。如果我们对训练数据集里的3个房屋样本(索引分别为1、2和3)逐一预测价格,将得到



image.png


a = torch.ones(3)
b = 10
print(a + b)


输出:


tensor([11., 11., 11.])

image.png


2.2 线性回归的从零开始实现


在了解了线性回归的背景知识之后,现在我们可以动手实现它了。尽管强大的深度学习框架可以减少大量重复性工作,但若过于依赖它提供的便利,会导致我们很难深入理解深度学习是如何工作的。因此,本节将介绍如何只利用Tensor和autograd来实现一个线性回归的训练。


首先,导入本节中实验所需的包或模块,其中的matplotlib包可用于作图,且设置成嵌入显示。


%matplotlib inline
import torch
from IPython import display
from matplotlib import pyplot as plt
import numpy as np
import random


2.2.1 生成数据集


image.png


num_inputs = 2
num_examples = 1000
true_w = [2, -3.4]
true_b = 4.2
features = torch.randn(num_examples, num_inputs,
                       dtype=torch.float32)
labels = true_w[0] * features[:, 0] + true_w[1] * features[:, 1] + true_b
labels += torch.tensor(np.random.normal(0, 0.01, size=labels.size()),
                       dtype=torch.float32)


image.png


def use_svg_display():
    # 用矢量图显示
    display.set_matplotlib_formats('svg')
def set_figsize(figsize=(3.5, 2.5)):
    use_svg_display()
    # 设置图的尺寸
    plt.rcParams['figure.figsize'] = figsize
# # 在../d2lzh_pytorch里面添加上面两个函数后就可以这样导入
# import sys
# sys.path.append("..")
# from d2lzh_pytorch import * 
set_figsize()
plt.scatter(features[:, 1].numpy(), labels.numpy(), 1);

1a72e457dcbd465d936d54adeeeea2a7.png

2.2.2 读取数据


在训练模型的时候,我们需要遍历数据集并不断读取小批量数据样本。这里我们定义一个函数:它每次返回batch_size(批量大小)个随机样本的特征和标签。


def data_iter(batch_size, features, labels):
    num_examples = len(features)
    indices = list(range(num_examples))
    random.shuffle(indices)  # 样本的读取顺序是随机的
    for i in range(0, num_examples, batch_size):
        j = torch.LongTensor(indices[i: min(i + batch_size, num_examples)]) # 最后一次可能不足一个batch
        # 参数0表示以行为标准进行选择
        yield  features.index_select(0, j), labels.index_select(0, j)


让我们读取第一个小批量数据样本并打印。每个批量的特征形状为(10, 2),分别对应批量大小和输入个数;标签形状为批量大小。


batch_size = 10
for X, y in data_iter(batch_size, features, labels):
    print(X, y)
    break

输出:

tensor([[-1.4239, -1.3788],
        [ 0.0275,  1.3550],
        [ 0.7616, -1.1384],
        [ 0.2967, -0.1162],
        [ 0.0822,  2.0826],
        [-0.6343, -0.7222],
        [ 0.4282,  0.0235],
        [ 1.4056,  0.3506],
        [-0.6496, -0.5202],
        [-0.3969, -0.9951]]) 
 tensor([ 6.0394, -0.3365,  9.5882,  5.1810, -2.7355,  5.3873,  4.9827,  5.7962,
         4.6727,  6.7921])

2.2.3 初始化模型参数


我们将权重初始化成均值为0、标准差为0.01的正态随机数,偏差则初始化成0。


w = torch.tensor(np.random.normal(0, 0.01, (num_inputs, 1)), dtype=torch.float32)
b = torch.zeros(1, dtype=torch.float32)


之后的模型训练中,需要对这些参数求梯度来迭代参数的值,因此我们要让它们的requires_grad=True


w.requires_grad_(requires_grad=True)
b.requires_grad_(requires_grad=True) 


2.2.4 定义模型


下面是线性回归的矢量计算表达式的实现。我们使用mm函数做矩阵乘法。


def linreg(X, w, b):  
    return torch.mm(X, w) + b


2.2.5 定义损失函数


我们使用上一节描述的平方损失来定义线性回归的损失函数。在实现中,我们需要把真实值y变形成预测值y_hat的形状。以下函数返回的结果也将和y_hat的形状相同。


def squared_loss(y_hat, y):  
    # 注意这里返回的是向量
    return (y_hat - y.view(y_hat.size())) ** 2 / 2


2.2.6 定义优化算法


以下的sgd函数实现了上一节中介绍的小批量随机梯度下降算法。它通过不断迭代模型参数来优化损失函数。这里自动求梯度模块计算得来的梯度是一个批量样本的梯度和。我们将它除以批量大小来得到平均值。

def sgd(params, lr, batch_size): 
    for param in params:
        param.data -= lr * param.grad / batch_size # 注意这里更改param时用的param.data

2.2.7 训练模型


在训练中,我们将多次迭代模型参数。在每次迭代中,我们根据当前读取的小批量数据样本(特征X和标签y),通过调用反向函数backward计算小批量随机梯度,并调用优化算法sgd迭代模型参数。由于我们之前设批量大小batch_size为10,每个小批量的损失l的形状为(10, 1)。回忆一下自动求梯度一节。由于变量l并不是一个标量,所以我们可以调用.sum()将其求和得到一个标量,再运行l.backward()得到该变量有关模型参数的梯度。注意在每次更新完参数后不要忘了将参数的梯度清零。


在一个迭代周期(epoch)中,我们将完整遍历一遍data_iter函数,并对训练数据集中所有样本都使用一次(假设样本数能够被批量大小整除)。这里的迭代周期个数num_epochs和学习率lr都是超参数,分别设3和0.03。在实践中,大多超参数都需要通过反复试错来不断调节。虽然迭代周期数设得越大模型可能越有效,但是训练时间可能过长。而有关学习率对模型的影响,我们会在后面“优化算法”一章中详细介绍。


lr = 0.03
num_epochs = 3
net = linreg
loss = squared_loss
for epoch in range(num_epochs):  # 训练模型一共需要num_epochs个迭代周期
    # 在每一个迭代周期中,会使用训练数据集中所有样本一次(假设样本数能够被批量大小整除)。X
    # 和y分别是小批量样本的特征和标签
    for X, y in data_iter(batch_size, features, labels):
        l = loss(net(X, w, b), y).sum()  # l是有关小批量X和y的损失
        l.backward()  # 小批量的损失对模型参数求梯度
        sgd([w, b], lr, batch_size)  # 使用小批量随机梯度下降迭代模型参数
        # 不要忘了梯度清零
        w.grad.data.zero_()
        b.grad.data.zero_()
    # 计算第一个迭代周期的损失
    train_l = loss(net(features, w, b), labels)
    print('epoch %d, loss %f' % (epoch + 1, train_l.mean().item()))


输出:


epoch 1, loss 0.028127
epoch 2, loss 0.000095
epoch 3, loss 0.000050
• 1
• 2
• 3


训练完成后,我们可以比较学到的参数和用来生成训练集的真实参数。它们应该很接近。


print(true_w, '\n', w)
print(true_b, '\n', b)


输出:


[2, -3.4]   
 tensor([[ 1.9998],
        [-3.3998]], requires_grad=True)
4.2 
 tensor([4.2001], requires_grad=True)


小结


  • 可以看出,仅使用Tensorautograd模块就可以很容易地实现一个模型。接下来,会在此基础上描述更多深度学习模型,并介绍怎样使用更简洁的代码(见下一节)来实现它们。


相关文章
|
24天前
|
机器学习/深度学习 数据采集 人工智能
AI赋能教育:深度学习在个性化学习系统中的应用
【10月更文挑战第26天】随着人工智能的发展,深度学习技术正逐步应用于教育领域,特别是个性化学习系统中。通过分析学生的学习数据,深度学习模型能够精准预测学生的学习表现,并为其推荐合适的学习资源和规划学习路径,从而提供更加高效、有趣和个性化的学习体验。
81 9
|
1月前
|
机器学习/深度学习 传感器 人工智能
深度学习之自主学习和任务规划
基于深度学习的自主学习和任务规划,是指通过深度学习算法使人工智能(AI)系统能够自主地从环境中学习,并根据特定的目标和任务,规划出有效的解决方案。
55 3
|
1月前
|
算法 PyTorch 算法框架/工具
Pytorch学习笔记(九):Pytorch模型的FLOPs、模型参数量等信息输出(torchstat、thop、ptflops、torchsummary)
本文介绍了如何使用torchstat、thop、ptflops和torchsummary等工具来计算Pytorch模型的FLOPs、模型参数量等信息。
223 2
|
19天前
|
机器学习/深度学习 监控 PyTorch
深度学习工程实践:PyTorch Lightning与Ignite框架的技术特性对比分析
在深度学习框架的选择上,PyTorch Lightning和Ignite代表了两种不同的技术路线。本文将从技术实现的角度,深入分析这两个框架在实际应用中的差异,为开发者提供客观的技术参考。
36 7
|
1月前
|
机器学习/深度学习 算法 PyTorch
深度学习笔记(十三):IOU、GIOU、DIOU、CIOU、EIOU、Focal EIOU、alpha IOU、SIOU、WIOU损失函数分析及Pytorch实现
这篇文章详细介绍了多种用于目标检测任务中的边界框回归损失函数,包括IOU、GIOU、DIOU、CIOU、EIOU、Focal EIOU、alpha IOU、SIOU和WIOU,并提供了它们的Pytorch实现代码。
185 1
深度学习笔记(十三):IOU、GIOU、DIOU、CIOU、EIOU、Focal EIOU、alpha IOU、SIOU、WIOU损失函数分析及Pytorch实现
|
1月前
|
机器学习/深度学习 存储 自然语言处理
深度学习之少样本学习
少样本学习(Few-Shot Learning, FSL)是深度学习中的一个重要研究领域,其目标是在只有少量标注样本的情况下,训练出能够很好地泛化到新类别或新任务的模型。
34 2
|
1月前
|
机器学习/深度学习 自然语言处理 计算机视觉
深度学习中的迁移学习技术
【10月更文挑战第11天】 本文探讨了深度学习中的迁移学习技术,并深入分析了其原理、应用场景及实现方法。通过实例解析,展示了迁移学习如何有效提升模型性能和开发效率。同时,文章也讨论了迁移学习面临的挑战及其未来发展方向。
|
24天前
|
安全 搜索推荐 机器学习/深度学习
AI赋能教育:深度学习在个性化学习系统中的应用
【10月更文挑战第26天】在人工智能的推动下,个性化学习系统逐渐成为教育领域的重要趋势。深度学习作为AI的核心技术,在构建个性化学习系统中发挥关键作用。本文探讨了深度学习在个性化推荐系统、智能辅导系统和学习行为分析中的应用,并提供了代码示例,展示了如何使用Keras构建模型预测学生对课程的兴趣。尽管面临数据隐私和模型可解释性等挑战,深度学习仍有望为教育带来更个性化和高效的学习体验。
60 0
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习之生物启发的学习系统
基于深度学习的生物启发学习系统(Biologically Inspired Learning Systems)旨在借鉴生物大脑的结构和学习机制,设计出更高效、更灵活的人工智能系统。
24 0
|
1月前
|
机器学习/深度学习 Python
深度学习笔记(六):如何运用梯度下降法来解决线性回归问题
这篇文章介绍了如何使用梯度下降法解决线性回归问题,包括梯度下降法的原理、线性回归的基本概念和具体的Python代码实现。
71 0

热门文章

最新文章

下一篇
无影云桌面