【从零开始学习深度学习】2. 深度学习框架Pytorch如何自动求梯度(gradient)

简介: 【从零开始学习深度学习】2. 深度学习框架Pytorch如何自动求梯度(gradient)

1 自动求梯度


深度学习中,我们经常需要对函数求梯度(gradient)。PyTorch提供的autograd包能够根据输入和前向传播过程自动构建计算图,并执行反向传播。


本文将介绍如何使用autograd包来进行自动求梯度的有关操作。


1.1 概念


上一节介绍的Tensor是这个包的核心类,如果将其属性.requires_grad设置为True,它将开始追踪(track)在其上的所有操作(这样就可以利用链式法则进行梯度传播了)。完成计算后,可以调用.backward()来完成所有梯度计算。此Tensor的梯度将累积到.grad属性中。


注意在y.backward()时,如果y是标量,则不需要为backward()传入任何参数;否则,需要传入一个与y同形的Tensor。解释见 1.2 节。


如果不想要被继续追踪,可以调用.detach()将其从追踪记录中分离出来,这样就可以防止将来的计算被追踪,这样梯度就传不过去了。此外,还可以用with torch.no_grad()将不想被追踪的操作代码块包裹起来,这种方法在评估模型的时候很常用,因为在评估模型时,我们并不需要计算可训练参数(requires_grad=True)的梯度。


Function是另外一个很重要的类。Tensor和Function互相结合就可以构建一个记录有整个计算过程的有向无环图(DAG)。每个Tensor都有一个.grad_fn属性,该属性即创建该Tensor的Function, 就是说该Tensor是不是通过某些运算得到的,若是,则grad_fn返回一个与这些运算相关的对象,否则是None。


下面通过一些例子来理解这些概念。


1.2 创建Tensor并设置requires_grad


创建一个Tensor并设置requires_grad=True:


x = torch.ones(2, 2, requires_grad=True)
print(x)
print(x.grad_fn)
• 1
• 2
• 3


输出:


tensor([[1., 1.],
        [1., 1.]], requires_grad=True)
None

再做一下运算操作:


y = x + 2
print(y)
print(y.grad_fn)


输出:


tensor([[3., 3.],
        [3., 3.]], grad_fn=<AddBackward>)
<AddBackward object at 0x1100477b8>


注意x是直接创建的,所以它没有grad_fn, 而y是通过一个加法操作创建的,所以它有一个为<AddBackward>grad_fn


像x这种直接创建的称为叶子节点,叶子节点对应的grad_fnNone


print(x.is_leaf, y.is_leaf) # True False
• 1


再来点复杂度运算操作:


z = y * y * 3
out = z.mean()
print(z, out)


输出:


tensor([[27., 27.],
        [27., 27.]], grad_fn=<MulBackward>) tensor(27., grad_fn=<MeanBackward1>)


通过.requires_grad_()来用in-place的方式改变requires_grad属性:


a = torch.randn(2, 2) # 缺失情况下默认 requires_grad = False
a = ((a * 3) / (a - 1))
print(a.requires_grad) # False
a.requires_grad_(True)
print(a.requires_grad) # True
b = (a * a).sum()
print(b.grad_fn)


输出:


False
True
<SumBackward0 object at 0x118f50cc0>


1.3 梯度计算


因为out是一个标量,所以调用backward()时不需要指定求导变量:


out.backward() # 等价于 out.backward(torch.tensor(1.))


image.png

print(x.grad)


输出:


tensor([[4.5000, 4.5000],
        [4.5000, 4.5000]])


image.png


image.png

# 再来反向传播一次,注意grad是累加的
out2 = x.sum()
out2.backward()
print(x.grad)
out3 = x.sum()
x.grad.data.zero_()
out3.backward()
print(x.grad)


输出:


tensor([[5.5000, 5.5000],
        [5.5000, 5.5000]])
tensor([[1., 1.],
        [1., 1.]])


现在我们解释1.1节留下的问题,为什么在y.backward()时,如果y是标量,则不需要为backward()传入任何参数;否则,需要传入一个与y同形的Tensor?

简单来说就是为了避免向量(甚至更高维张量)对张量求导,而转换成标量对张量求导。举个例子,假设形状为 m x n 的矩阵 X 经过运算得到了 p x q 的矩阵 Y,Y 又经过运算得到了 s x t 的矩阵 Z。那么按照前面讲的规则,dZ/dY 应该是一个 s x t x p x q 四维张量,dY/dX 是一个 p x q x m x n的四维张量。问题来了,怎样反向传播?怎样将两个四维张量相乘???这要怎么乘???就算能解决两个四维张量怎么乘的问题,四维和三维的张量又怎么乘?导数的导数又怎么求,这一连串的问题,感觉要疯掉……

为了避免这个问题,我们不允许张量对张量求导,只允许标量对张量求导,求导结果是和自变量同形的张量。所以必要时我们要把张量通过将所有张量的元素加权求和的方式转换为标量,举个例子,假设y由自变量x计算而来,w是和y同形的张量,则y.backward(w)的含义是:先计算l = torch.sum(y * w),则l是个标量,然后求l对自变量x的导数。


来看一些实际例子。

x = torch.tensor([1.0, 2.0, 3.0, 4.0], requires_grad=True)
y = 2 * x
z = y.view(2, 2)
print(z)


输出:


tensor([[2., 4.],
        [6., 8.]], grad_fn=<ViewBackward>)
• 1
• 2


现在 z 不是一个标量,所以在调用backward时需要传入一个和z同形的权重向量进行加权求和得到一个标量。


v = torch.tensor([[1.0, 0.1], [0.01, 0.001]], dtype=torch.float)
z.backward(v)
print(x.grad)


输出:


tensor([2.0000, 0.2000, 0.0200, 0.0020])
• 1


注意,x.grad是和x同形的张量。


再来看看中断梯度追踪的例子:


x = torch.tensor(1.0, requires_grad=True)
y1 = x ** 2 
with torch.no_grad():
    y2 = x ** 3
y3 = y1 + y2
print(x.requires_grad)
print(y1, y1.requires_grad) # True
print(y2, y2.requires_grad) # False
print(y3, y3.requires_grad) # True


输出:


True
tensor(1., grad_fn=<PowBackward0>) True
tensor(1.) False
tensor(2., grad_fn=<ThAddBackward>) True


可以看到,上面的y2是没有grad_fn而且y2.requires_grad=False的,而y3是有grad_fn的。如果我们将y3x求梯度的话会是多少呢?


y3.backward()
print(x.grad)



输出:


tensor(2.)


image.png

RuntimeError: element 0 of tensors does not require grad and does not have a grad_fn

image.png

x = torch.ones(1,requires_grad=True)
print(x.data) # 还是一个tensor
print(x.data.requires_grad) # 但是已经是独立于计算图之外
y = 2 * x
x.data *= 100 # 只改变了值,不会记录在计算图,所以不会影响梯度传播
y.backward()
print(x) # 更改data的值也会影响tensor的值
print(x.grad)


输出:


tensor([1.])
False
tensor([100.], requires_grad=True)
tensor([2.])


相关文章
|
2月前
|
机器学习/深度学习 数据采集 人工智能
AI赋能教育:深度学习在个性化学习系统中的应用
【10月更文挑战第26天】随着人工智能的发展,深度学习技术正逐步应用于教育领域,特别是个性化学习系统中。通过分析学生的学习数据,深度学习模型能够精准预测学生的学习表现,并为其推荐合适的学习资源和规划学习路径,从而提供更加高效、有趣和个性化的学习体验。
162 9
|
1天前
|
机器学习/深度学习 存储 人工智能
MNN:阿里开源的轻量级深度学习推理框架,支持在移动端等多种终端上运行,兼容主流的模型格式
MNN 是阿里巴巴开源的轻量级深度学习推理框架,支持多种设备和主流模型格式,具备高性能和易用性,适用于移动端、服务器和嵌入式设备。
37 18
MNN:阿里开源的轻量级深度学习推理框架,支持在移动端等多种终端上运行,兼容主流的模型格式
|
2月前
|
机器学习/深度学习 数据采集 数据可视化
TensorFlow,一款由谷歌开发的开源深度学习框架,详细讲解了使用 TensorFlow 构建深度学习模型的步骤
本文介绍了 TensorFlow,一款由谷歌开发的开源深度学习框架,详细讲解了使用 TensorFlow 构建深度学习模型的步骤,包括数据准备、模型定义、损失函数与优化器选择、模型训练与评估、模型保存与部署,并展示了构建全连接神经网络的具体示例。此外,还探讨了 TensorFlow 的高级特性,如自动微分、模型可视化和分布式训练,以及其在未来的发展前景。
110 5
|
2月前
|
机器学习/深度学习 监控 PyTorch
深度学习工程实践:PyTorch Lightning与Ignite框架的技术特性对比分析
在深度学习框架的选择上,PyTorch Lightning和Ignite代表了两种不同的技术路线。本文将从技术实现的角度,深入分析这两个框架在实际应用中的差异,为开发者提供客观的技术参考。
53 7
|
2月前
|
机器学习/深度学习 自然语言处理 并行计算
DeepSpeed分布式训练框架深度学习指南
【11月更文挑战第6天】随着深度学习模型规模的日益增大,训练这些模型所需的计算资源和时间成本也随之增加。传统的单机训练方式已难以应对大规模模型的训练需求。
187 3
|
3月前
|
机器学习/深度学习 存储 自然语言处理
深度学习之少样本学习
少样本学习(Few-Shot Learning, FSL)是深度学习中的一个重要研究领域,其目标是在只有少量标注样本的情况下,训练出能够很好地泛化到新类别或新任务的模型。
51 2
|
3月前
|
机器学习/深度学习 自然语言处理 计算机视觉
深度学习中的迁移学习技术
【10月更文挑战第11天】 本文探讨了深度学习中的迁移学习技术,并深入分析了其原理、应用场景及实现方法。通过实例解析,展示了迁移学习如何有效提升模型性能和开发效率。同时,文章也讨论了迁移学习面临的挑战及其未来发展方向。
|
2月前
|
安全 搜索推荐 机器学习/深度学习
AI赋能教育:深度学习在个性化学习系统中的应用
【10月更文挑战第26天】在人工智能的推动下,个性化学习系统逐渐成为教育领域的重要趋势。深度学习作为AI的核心技术,在构建个性化学习系统中发挥关键作用。本文探讨了深度学习在个性化推荐系统、智能辅导系统和学习行为分析中的应用,并提供了代码示例,展示了如何使用Keras构建模型预测学生对课程的兴趣。尽管面临数据隐私和模型可解释性等挑战,深度学习仍有望为教育带来更个性化和高效的学习体验。
167 0
|
3月前
|
算法 PyTorch 算法框架/工具
Pytorch学习笔记(九):Pytorch模型的FLOPs、模型参数量等信息输出(torchstat、thop、ptflops、torchsummary)
本文介绍了如何使用torchstat、thop、ptflops和torchsummary等工具来计算Pytorch模型的FLOPs、模型参数量等信息。
425 2
|
30天前
|
机器学习/深度学习 人工智能 PyTorch
Transformer模型变长序列优化:解析PyTorch上的FlashAttention2与xFormers
本文探讨了Transformer模型中变长输入序列的优化策略,旨在解决深度学习中常见的计算效率问题。文章首先介绍了批处理变长输入的技术挑战,特别是填充方法导致的资源浪费。随后,提出了多种优化技术,包括动态填充、PyTorch NestedTensors、FlashAttention2和XFormers的memory_efficient_attention。这些技术通过减少冗余计算、优化内存管理和改进计算模式,显著提升了模型的性能。实验结果显示,使用FlashAttention2和无填充策略的组合可以将步骤时间减少至323毫秒,相比未优化版本提升了约2.5倍。
48 3
Transformer模型变长序列优化:解析PyTorch上的FlashAttention2与xFormers