【阿旭机器学习实战】【22】特征降维实战---主成分分析(PCA)与线性判别分析算法(LDA)

简介: 【阿旭机器学习实战】【22】特征降维实战---主成分分析(PCA)与线性判别分析算法(LDA)

1. 特征降维的主要目的


1)在实际的项目中经常会遭遇到特征维度非常高的样本(比如图片),往往无法借助于自己领域的知识来构建有效的特征


2)在数据表现方面,我们无法观测超过三维的数据


2. 常见特征降维的算法是主成分分析:PCA


PCA算法核心:把高维度的向量向低维度投影


1)去平均值,即每一位特征减去各自的平均值


2)计算矩阵协方差和特征向量与特征值


3)把特征值从小到大排序


4)保留前K个特征值对应的特征向量


5)将数据投影到这K个特征所构成的一个新的向量空间中


3. PCA建模与直接减少特征数建模对比----鸢尾花数据集为例


3.1 直接减少特征数目建模


from sklearn import datasets
• 1
iris = datasets.load_iris()
data = iris.data
target = iris.target
data[:4]
array([[5.1, 3.5, 1.4, 0.2],
       [4.9, 3. , 1.4, 0.2],
       [4.7, 3.2, 1.3, 0.2],
       [4.6, 3.1, 1.5, 0.2]])
from sklearn.neighbors import KNeighborsClassifier
# 直接取前连个特征,舍去后面的两个特征然后进行建模
# 这里没有分析哪些特征是主成分,必然会造成主成分丢失
train = data[:,:2]
train[:2]
array([[5.1, 3.5],
       [4.9, 3. ]])
• 1
• 2
# 使用KNN算法进行建模
knn = KNeighborsClassifier()

# 训练模型
knn.fit(train,target)
KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
           metric_params=None, n_jobs=1, n_neighbors=5, p=2,
           weights='uniform')
# 模型在训练数据上的准确度
knn.score(train,target)
• 1
• 2
0.8333333333333334



3.2 不减少特征数目进行建模


knn = KNeighborsClassifier()
• 1
knn.fit(data,target)
KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
           metric_params=None, n_jobs=1, n_neighbors=5, p=2,
           weights='uniform')
knn.score(data,target)
• 1
0.9666666666666667
• 1


3.3 交叉验证–直接比较是否减少特征数目建模的准确率


交叉验证法不需要训练,直接传入模型和训练数据就可以输出每一次划分的准确率


from sklearn.model_selection import cross_val_score
• 1
cross_val_score(knn,train,target)
• 1
array([0.74509804, 0.74509804, 0.77083333])
cross_val_score(knn,data,target)
• 1
array([0.98039216, 0.98039216, 1.        ])


通过以上是否减少特征数据建模后预测准确度我们发现,不减少特征情况下建模准确率达到97%以上,而如果直接取前两个特征进行建模,模型准确度只有70%多,准确率相差还是很大的,说明如果直接减少特征数目降维,会丢失很多有用的信息,从而导致准确率降低。


下面我们用主成分分析PCA的方法进行降维,然后看其模型准确度如何


3.3 用PCA算法进行数据降维–然后进行评估

# 引入PCA算法
from sklearn.decomposition import PCA
# 构建2个特征
pca = PCA(n_components=2)
# 训练阶段通过主成分分析,找出主成分的特征空间
pca.fit(data)
PCA(copy=True, iterated_power='auto', n_components=2, random_state=None,
  svd_solver='auto', tol=0.0, whiten=False)
# 转化阶段把数据由原来的空间投影到主成分空间
train_pca = pca.transform(data)
# 交叉验证计算每次建模的准确率
cross_val_score(knn,train_pca,target)
array([0.98039216, 0.94117647, 0.97916667])


我们可以看到,通过PCA方法进行建模后,模型准确率与不减少特征直接建模的准确率差不多,效果还是非常好的。


4. 监督学习算法的特征降维----线性判别分析算法(LDA)


通过主成分分析PCA降维以后可以大大的提高监督学习算法的性能。


主成分分析PCA降维属于无监督学习的一种降维方法,下面介绍一种监督学习算法的降维方法--LDA算法。由于监督学习算法需要考虑标签,因此它的效率低于PCA。


# 导入LDA算法--线性判别分析算法(linear discriminant analysis,LDA)
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
#创建lda模型
lda = LinearDiscriminantAnalysis(n_components=2)
# 训练算法并转化数据,借用上述例子中的鸢尾花数据
train_lda = lda.fit_transform(data,target)
cross_val_score(knn,train_lda,target)
array([1.        , 0.94117647, 1.        ])


可以发现,这种LDA的降维方法也是很好的,准确率相比于原始数据建模相差不多。

相关文章
|
8天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
28 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
25天前
|
并行计算 算法 IDE
【灵码助力Cuda算法分析】分析共享内存的矩阵乘法优化
本文介绍了如何利用通义灵码在Visual Studio 2022中对基于CUDA的共享内存矩阵乘法优化代码进行深入分析。文章从整体程序结构入手,逐步深入到线程调度、矩阵分块、循环展开等关键细节,最后通过带入具体值的方式进一步解析复杂循环逻辑,展示了通义灵码在辅助理解和优化CUDA编程中的强大功能。
|
29天前
|
机器学习/深度学习 算法 Java
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
|
17天前
|
机器学习/深度学习 人工智能 算法
探索机器学习中的决策树算法
【10月更文挑战第29天】本文将深入浅出地介绍决策树算法,一种在机器学习中广泛使用的分类和回归方法。我们将从基础概念出发,逐步深入到算法的实际应用,最后通过一个代码示例来直观展示如何利用决策树解决实际问题。无论你是机器学习的初学者还是希望深化理解的开发者,这篇文章都将为你提供有价值的见解和指导。
|
1月前
|
算法
PID算法原理分析
【10月更文挑战第12天】PID控制方法从提出至今已有百余年历史,其由于结构简单、易于实现、鲁棒性好、可靠性高等特点,在机电、冶金、机械、化工等行业中应用广泛。
|
28天前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
|
13天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
14天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
15天前
|
存储 算法 决策智能
基于免疫算法的TSP问题求解matlab仿真
旅行商问题(TSP)是一个经典的组合优化问题,目标是寻找经过每个城市恰好一次并返回起点的最短回路。本文介绍了一种基于免疫算法(IA)的解决方案,该算法模拟生物免疫系统的运作机制,通过克隆选择、变异和免疫记忆等步骤,有效解决了TSP问题。程序使用MATLAB 2022a版本运行,展示了良好的优化效果。
|
14天前
|
机器学习/深度学习 算法 芯片
基于GSP工具箱的NILM算法matlab仿真
基于GSP工具箱的NILM算法Matlab仿真,利用图信号处理技术解析家庭或建筑内各电器的独立功耗。GSPBox通过图的节点、边和权重矩阵表示电气系统,实现对未知数据的有效分类。系统使用MATLAB2022a版本,通过滤波或分解技术从全局能耗信号中提取子设备的功耗信息。

热门文章

最新文章