【阿旭机器学习实战】【15】人脸自动补全(多目标回归),并比较5种不同模型的预测效果

本文涉及的产品
模型训练 PAI-DLC,100CU*H 3个月
交互式建模 PAI-DSW,每月250计算时 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
简介: 【阿旭机器学习实战】【15】人脸自动补全(多目标回归),并比较5种不同模型的预测效果

机器学习实战—人脸自动补全(多目标预测)


目标


通过上半部分的人脸图案来预测下边部分人脸,进行人脸补全。


实质是一个多目标预测问题,对每一个目标点都会进行模型建模,然后通过相应模型对各个点进行预测


数据集


采用Olivetti人脸数据集包含400张灰度的64*64像素的人脸图像,每个图像被展平为大小为4096的一维向量,40个不同的人拍照十次。


from sklearn.neighbors import KNeighborsRegressor
from sklearn.linear_model import LinearRegression,Ridge,Lasso
from sklearn.ensemble import ExtraTreesRegressor
from sklearn import datasets
• 1
faces = datasets.fetch_olivetti_faces()
• 1
faces
{'data': array([[0.30991736, 0.3677686 , 0.41735536, ..., 0.15289256, 0.16115703,
         0.1570248 ],
        [0.45454547, 0.47107437, 0.5123967 , ..., 0.15289256, 0.15289256,
         0.15289256],
        [0.3181818 , 0.40082645, 0.49173555, ..., 0.14049587, 0.14876033,
         0.15289256],
        ...,
        [0.5       , 0.53305787, 0.607438  , ..., 0.17768595, 0.14876033,
         0.19008264],
        [0.21487603, 0.21900827, 0.21900827, ..., 0.57438016, 0.59090906,
         0.60330576],
        [0.5165289 , 0.46280992, 0.28099173, ..., 0.35950413, 0.3553719 ,
         0.38429752]], dtype=float32),
 'images': array([[[0.30991736, 0.3677686 , 0.41735536, ..., 0.37190083,
          0.3305785 , 0.30578512],
         [0.3429752 , 0.40495867, 0.43801653, ..., 0.37190083,
          0.338843  , 0.3140496 ],
         [0.3429752 , 0.41735536, 0.45041323, ..., 0.38016528,
          0.338843  , 0.29752067],
         ...,
         [0.21487603, 0.20661157, 0.2231405 , ..., 0.15289256,
          0.16528925, 0.17355372],
         [0.20247933, 0.2107438 , 0.2107438 , ..., 0.14876033,
          0.16115703, 0.16528925],
         [0.20247933, 0.20661157, 0.20247933, ..., 0.15289256,
          0.16115703, 0.1570248 ]],
        [[0.45454547, 0.47107437, 0.5123967 , ..., 0.19008264,
          0.18595041, 0.18595041],
         [0.446281  , 0.48347107, 0.5206612 , ..., 0.21487603,
          0.2107438 , 0.2107438 ],
         [0.49586776, 0.5165289 , 0.53305787, ..., 0.20247933,
          0.20661157, 0.20661157],
         ...,
         [0.77272725, 0.78099173, 0.7933884 , ..., 0.1446281 ,
          0.1446281 , 0.1446281 ],
         [0.77272725, 0.7768595 , 0.7892562 , ..., 0.13636364,
          0.13636364, 0.13636364],
         [0.7644628 , 0.7892562 , 0.78099173, ..., 0.15289256,
          0.15289256, 0.15289256]],
        [[0.3181818 , 0.40082645, 0.49173555, ..., 0.40082645,
          0.3553719 , 0.30991736],
         [0.30991736, 0.3966942 , 0.47933885, ..., 0.40495867,
          0.37603307, 0.30165288],
         [0.26859504, 0.34710744, 0.45454547, ..., 0.3966942 ,
          0.37190083, 0.30991736],
         ...,
         [0.1322314 , 0.09917355, 0.08264463, ..., 0.13636364,
          0.14876033, 0.15289256],
         [0.11570248, 0.09504132, 0.0785124 , ..., 0.1446281 ,
          0.1446281 , 0.1570248 ],
         [0.11157025, 0.09090909, 0.0785124 , ..., 0.14049587,
          0.14876033, 0.15289256]],
        ...,
        [[0.5       , 0.53305787, 0.607438  , ..., 0.28512397,
          0.23966943, 0.21487603],
         [0.49173555, 0.5413223 , 0.60330576, ..., 0.29752067,
          0.20247933, 0.20661157],
         [0.46694216, 0.55785125, 0.6198347 , ..., 0.29752067,
          0.17768595, 0.18595041],
         ...,
         [0.03305785, 0.46280992, 0.5289256 , ..., 0.17355372,
          0.17355372, 0.1694215 ],
         [0.1570248 , 0.5247934 , 0.53305787, ..., 0.16528925,
          0.1570248 , 0.18595041],
         [0.45454547, 0.5206612 , 0.53305787, ..., 0.17768595,
          0.14876033, 0.19008264]],
        [[0.21487603, 0.21900827, 0.21900827, ..., 0.71487606,
          0.71487606, 0.6942149 ],
         [0.20247933, 0.20661157, 0.20661157, ..., 0.7107438 ,
          0.7066116 , 0.6942149 ],
         [0.2107438 , 0.20661157, 0.20661157, ..., 0.6859504 ,
          0.69008267, 0.6942149 ],
         ...,
         [0.2644628 , 0.25619835, 0.2603306 , ..., 0.5413223 ,
          0.57438016, 0.59090906],
         [0.26859504, 0.2644628 , 0.26859504, ..., 0.56198347,
          0.58264464, 0.59504133],
         [0.27272728, 0.26859504, 0.27272728, ..., 0.57438016,
          0.59090906, 0.60330576]],
        [[0.5165289 , 0.46280992, 0.28099173, ..., 0.5785124 ,
          0.5413223 , 0.60330576],
         [0.5165289 , 0.45041323, 0.29338843, ..., 0.58264464,
          0.553719  , 0.5785124 ],
         [0.5165289 , 0.44214877, 0.29338843, ..., 0.59917355,
          0.5785124 , 0.54545456],
         ...,
         [0.39256197, 0.41322315, 0.38842976, ..., 0.33471075,
          0.37190083, 0.3966942 ],
         [0.39256197, 0.38429752, 0.40495867, ..., 0.3305785 ,
          0.35950413, 0.37603307],
         [0.3677686 , 0.40495867, 0.3966942 , ..., 0.35950413,
          0.3553719 , 0.38429752]]], dtype=float32),
 'target': array([ 0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  1,  1,  1,  1,  1,  1,  1,
         1,  1,  1,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  3,  3,  3,  3,
         3,  3,  3,  3,  3,  3,  4,  4,  4,  4,  4,  4,  4,  4,  4,  4,  5,
         5,  5,  5,  5,  5,  5,  5,  5,  5,  6,  6,  6,  6,  6,  6,  6,  6,
         6,  6,  7,  7,  7,  7,  7,  7,  7,  7,  7,  7,  8,  8,  8,  8,  8,
         8,  8,  8,  8,  8,  9,  9,  9,  9,  9,  9,  9,  9,  9,  9, 10, 10,
        10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11,
        11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13,
        13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15,
        15, 15, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16,
        17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 18, 18, 18, 18, 18, 18, 18,
        18, 18, 18, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 20, 20, 20, 20,
        20, 20, 20, 20, 20, 20, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 22,
        22, 22, 22, 22, 22, 22, 22, 22, 22, 23, 23, 23, 23, 23, 23, 23, 23,
        23, 23, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 25, 25, 25, 25, 25,
        25, 25, 25, 25, 25, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 27, 27,
        27, 27, 27, 27, 27, 27, 27, 27, 28, 28, 28, 28, 28, 28, 28, 28, 28,
        28, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 30, 30, 30, 30, 30, 30,
        30, 30, 30, 30, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 32, 32, 32,
        32, 32, 32, 32, 32, 32, 32, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33,
        34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 35, 35, 35, 35, 35, 35, 35,
        35, 35, 35, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 37, 37, 37, 37,
        37, 37, 37, 37, 37, 37, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 39,
        39, 39, 39, 39, 39, 39, 39, 39, 39]),
 'DESCR': 'Modified Olivetti faces dataset.\n\nThe original database was available from\n\n    http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html\n\nThe version retrieved here comes in MATLAB format from the personal\nweb page of Sam Roweis:\n\n    http://www.cs.nyu.edu/~roweis/\n\nThere are ten different images of each of 40 distinct subjects. For some\nsubjects, the images were taken at different times, varying the lighting,\nfacial expressions (open / closed eyes, smiling / not smiling) and facial\ndetails (glasses / no glasses). All the images were taken against a dark\nhomogeneous background with the subjects in an upright, frontal position (with\ntolerance for some side movement).\n\nThe original dataset consisted of 92 x 112, while the Roweis version\nconsists of 64x64 images.\n'}

data = faces.data
target = faces.target
data.shape
(400, 4096)
• 1
faces.images.shape
• 1
(400, 64, 64)

import matplotlib.pyplot as plt
%matplotlib inline
• 1
• 2
# 打印一张人脸图片
plt.imshow(data[100].reshape((64,64)),cmap="gray")
• 1
• 2


9211e5872a2b42218d4fc6c559ff613b.png

数据切分


切分特征数据数据和标签数据,特征是上半边脸,标签是下半边脸


# 特征是上半边脸
faces_up = data[:,:2048]
# 需要预测的目标:标签是下半边脸
faces_down = data[:,2048:]
plt.figure(figsize=(2,2))
plt.imshow(faces_up[10].reshape((32,64)),cmap="gray")
• 1
• 2
<matplotlib.image.AxesImage at 0x25eca1c8828>

a8fa790840c54aca923b28b5143e7f91.png

plt.figure(figsize=(2,2))
plt.imshow(faces_down[10].reshape((32,64)),cmap="gray")

10da94a016c84d93bb5a463285be775c.png

划分数据集


# 数据切分
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test = train_test_split(faces_up,faces_down,test_size=0.02)
• 1
y_train[1]


array([0.5082645 , 0.5082645 , 0.5123967 , ..., 0.16115703, 0.17768595,
       0.1694215 ], dtype=float32)


建立不同的回归模型并训练


此处分别用KNN回归模型,线性回归,岭回归,lasso回归,极端随机森林回归这几种不同的模型来进行建模


estimators = {
    "knn":KNeighborsRegressor(),
    "linear":LinearRegression(),
    "ridge":Ridge(),
    "lasso":Lasso(),
    "extra":ExtraTreesRegressor()  #极端随机森林回归
}
# 定义一个字典,用于保存每个算法预测结果
faces_pre = dict()
for key,estimator in estimators.items():
    # 对算法进行模型训练
    estimator.fit(x_train,y_train)
    # 预测
    y_ = estimator.predict(x_test)
    # 把预测的结果保存
    faces_pre[key] = y_
    # 得分
    score = estimator.score(x_test, y_test)
    print(key, score)
knn 0.4880642098170732
linear 0.18894319531680143
ridge 0.5157197923145055
lasso -0.2100687498661858
extra 0.35087195680524175
faces_pre
{'knn': array([[0.4471074 , 0.41652894, 0.42066115, ..., 0.54793394, 0.5355372 ,
         0.546281  ],
        [0.34876034, 0.34214878, 0.346281  , ..., 0.42727274, 0.42809922,
         0.43057853],
        [0.5355372 , 0.546281  , 0.58016527, ..., 0.56611574, 0.56280994,
         0.5644628 ],
        ...,
        [0.64793384, 0.67685956, 0.7049587 , ..., 0.41487604, 0.3586777 ,
         0.36776862],
        [0.3942149 , 0.41322312, 0.43553716, ..., 0.45785123, 0.43471074,
         0.39173552],
        [0.47520667, 0.47024792, 0.51404965, ..., 0.631405  , 0.6256199 ,
         0.59173554]], dtype=float32),
 'linear': array([[0.42212042, 0.35969752, 0.39748642, ..., 0.63096315, 0.5628751 ,
         0.5159277 ],
        [0.4241521 , 0.26758337, 0.16570012, ..., 0.09656662, 0.13010818,
         0.19814485],
        [0.62213266, 0.441006  , 0.48480797, ..., 0.5819658 , 0.69699645,
         0.44033697],
        ...,
        [0.71544605, 0.6732123 , 0.7088314 , ..., 0.37067276, 0.39097485,
         0.45659465],
        [0.2940399 , 0.3306437 , 0.32395566, ..., 0.19252078, 0.21714431,
         0.24263924],
        [0.4138433 , 0.47978985, 0.5166639 , ..., 0.5562554 , 0.4086836 ,
         0.42044348]], dtype=float32),
 'ridge': array([[0.4290133 , 0.37331253, 0.4017402 , ..., 0.5793132 , 0.53899723,
         0.4968022 ],
        [0.3253019 , 0.2301054 , 0.17614344, ..., 0.33642793, 0.3497425 ,
         0.3560007 ],
        [0.5519007 , 0.46847916, 0.5257808 , ..., 0.6301012 , 0.69831306,
         0.5881569 ],
        ...,
        [0.6989316 , 0.6826698 , 0.7077453 , ..., 0.29566136, 0.32281214,
         0.3521443 ],
        [0.31752783, 0.33159164, 0.33879474, ..., 0.24723864, 0.23903543,
         0.23862499],
        [0.39791593, 0.4184358 , 0.52279156, ..., 0.58981174, 0.50477254,
         0.5145724 ]], dtype=float32),
 'lasso': array([[0.5130819 , 0.5360938 , 0.56652683, ..., 0.31880376, 0.31096098,
         0.307535  ],
        [0.5130819 , 0.5360938 , 0.56652683, ..., 0.31880376, 0.31096098,
         0.307535  ],
        [0.5130819 , 0.5360938 , 0.56652683, ..., 0.31880376, 0.31096098,
         0.307535  ],
        ...,
        [0.5130819 , 0.5360938 , 0.56652683, ..., 0.31880376, 0.31096098,
         0.307535  ],
        [0.5130819 , 0.5360938 , 0.56652683, ..., 0.31880376, 0.31096098,
         0.307535  ],
        [0.5130819 , 0.5360938 , 0.56652683, ..., 0.31880376, 0.31096098,
         0.307535  ]], dtype=float32),
 'extra': array([[0.42644627, 0.39462809, 0.40661157, ..., 0.5409091 , 0.53388429,
         0.53966941],
        [0.30619835, 0.33347108, 0.35661157, ..., 0.43057852, 0.42066116,
         0.40909091],
        [0.43842976, 0.47768595, 0.58347108, ..., 0.45867768, 0.40041323,
         0.39380165],
        ...,
        [0.64049588, 0.65702479, 0.6731405 , ..., 0.36157025, 0.37272727,
         0.38429752],
        [0.3161157 , 0.3144628 , 0.37066115, ..., 0.41239669, 0.40206612,
         0.37685951],
        [0.43471075, 0.47272727, 0.51818182, ..., 0.54090908, 0.503719  ,
         0.50041322]])}
faces_pre["knn"]
array([[0.4471074 , 0.41652894, 0.42066115, ..., 0.54793394, 0.5355372 ,
        0.546281  ],
       [0.34876034, 0.34214878, 0.346281  , ..., 0.42727274, 0.42809922,
        0.43057853],
       [0.5355372 , 0.546281  , 0.58016527, ..., 0.56611574, 0.56280994,
        0.5644628 ],
       ...,
       [0.64793384, 0.67685956, 0.7049587 , ..., 0.41487604, 0.3586777 ,
        0.36776862],
       [0.3942149 , 0.41322312, 0.43553716, ..., 0.45785123, 0.43471074,
        0.39173552],
       [0.47520667, 0.47024792, 0.51404965, ..., 0.631405  , 0.6256199 ,
        0.59173554]], dtype=float32)


不同模型预测的人脸结果与实际的对比


import numpy as np
plt.figure(figsize=(6*3,8*3))
for i in range(8):
    axes = plt.subplot(8,6,i*6+1)
    axes.axis("off")
    face_up = x_test[i]
    face_down = y_test[i]
    face = np.concatenate([face_up,face_down])
    axes.imshow(face.reshape((64,64)),cmap="gray")
    if i==0:
        axes.set_title("True")
    # 把机器学习预测出来的下半边脸和上半边脸拼接
    for j,key in enumerate(faces_pre):
        axes = plt.subplot(8,6,i*6+2+j)
        axes.axis("off")
        if i==0:
            axes.set_title(key)
        face_up = x_test[i]
        y_pre = faces_pre[key]
        face_down_pre = y_pre[i]
        face =np.concatenate([face_up,face_down_pre])
        axes.imshow(face.reshape((64,64)),cmap="gray")

2abf7f312ef94f1283fceed0d172bc4b.png

通过对比发现,上述案例中通过KNN预测的结果的脸型要好一些只是有明显的分界线,需要进一步处理,线性回归与岭回归预测的结果没有明显分界线,但是实际预测效果没有那么好;lasso回归,极端随机森林预测出的人脸结果不理想。


相关文章
|
2月前
|
人工智能 自然语言处理 IDE
模型微调不再被代码难住!PAI和Qwen3-Coder加速AI开发新体验
通义千问 AI 编程大模型 Qwen3-Coder 正式开源,阿里云人工智能平台 PAI 支持云上一键部署 Qwen3-Coder 模型,并可在交互式建模环境中使用 Qwen3-Coder 模型。
665 109
|
3月前
|
人工智能 自然语言处理 运维
【新模型速递】PAI-Model Gallery云上一键部署Kimi K2模型
月之暗面发布开源模型Kimi K2,采用MoE架构,参数达1T,激活参数32B,具备强代码能力及Agent任务处理优势。在编程、工具调用、数学推理测试中表现优异。阿里云PAI-Model Gallery已支持云端部署,提供企业级方案。
299 0
【新模型速递】PAI-Model Gallery云上一键部署Kimi K2模型
|
4月前
|
机器学习/深度学习 算法 安全
差分隐私机器学习:通过添加噪声让模型更安全,也更智能
本文探讨在敏感数据上应用差分隐私(DP)进行机器学习的挑战与实践。通过模拟DP-SGD算法,在模型训练中注入噪声以保护个人隐私。实验表明,该方法在保持71%准确率和0.79 AUC的同时,具备良好泛化能力,但也带来少数类预测精度下降的问题。研究强调差分隐私应作为模型设计的核心考量,而非事后补救,并提出在参数调优、扰动策略选择和隐私预算管理等方面的优化路径。
362 3
差分隐私机器学习:通过添加噪声让模型更安全,也更智能
|
3月前
|
人工智能 自然语言处理 运维
【新模型速递】PAI-Model Gallery云上一键部署gpt-oss系列模型
阿里云 PAI-Model Gallery 已同步接入 gpt-oss 系列模型,提供企业级部署方案。
|
4月前
|
机器学习/深度学习 人工智能 算法
Post-Training on PAI (4):模型微调SFT、DPO、GRPO
阿里云人工智能平台 PAI 提供了完整的模型微调产品能力,支持 监督微调(SFT)、偏好对齐(DPO)、强化学习微调(GRPO) 等业界常用模型微调训练方式。根据客户需求及代码能力层级,分别提供了 PAI-Model Gallery 一键微调、PAI-DSW Notebook 编程微调、PAI-DLC 容器化任务微调的全套产品功能。
|
4月前
|
机器学习/深度学习 分布式计算 Java
Java 大视界 -- Java 大数据机器学习模型在遥感图像土地利用分类中的优化与应用(199)
本文探讨了Java大数据与机器学习模型在遥感图像土地利用分类中的优化与应用。面对传统方法效率低、精度差的问题,结合Hadoop、Spark与深度学习框架,实现了高效、精准的分类。通过实际案例展示了Java在数据处理、模型融合与参数调优中的强大能力,推动遥感图像分类迈向新高度。
|
4月前
|
机器学习/深度学习 存储 Java
Java 大视界 -- Java 大数据机器学习模型在游戏用户行为分析与游戏平衡优化中的应用(190)
本文探讨了Java大数据与机器学习模型在游戏用户行为分析及游戏平衡优化中的应用。通过数据采集、预处理与聚类分析,开发者可深入洞察玩家行为特征,构建个性化运营策略。同时,利用回归模型优化游戏数值与付费机制,提升游戏公平性与用户体验。
|
5月前
|
存储 人工智能 运维
企业级MLOps落地:基于PAI-Studio构建自动化模型迭代流水线
本文深入解析MLOps落地的核心挑战与解决方案,涵盖技术断层分析、PAI-Studio平台选型、自动化流水线设计及实战构建,全面提升模型迭代效率与稳定性。
224 6
|
4月前
|
机器学习/深度学习 算法 Java
Java 大视界 -- Java 大数据机器学习模型在舆情分析中的情感倾向判断与话题追踪(185)
本篇文章深入探讨了Java大数据与机器学习在舆情分析中的应用,重点介绍了情感倾向判断与话题追踪的技术实现。通过实际案例,展示了如何利用Java生态工具如Hadoop、Hive、Weka和Deeplearning4j进行舆情数据处理、情感分类与趋势预测,揭示了其在企业品牌管理与政府决策中的重要价值。文章还展望了多模态融合、实时性提升及个性化服务等未来发展方向。

热门文章

最新文章

相关产品

  • 人工智能平台 PAI