周志华《Machine Learning》学习笔记(2)--性能度量

简介: 本篇主要是对第二章剩余知识的理解,包括:性能度量、比较检验和偏差与方差。

本篇主要是对第二章剩余知识的理解,包括:性能度量、比较检验和偏差与方差。在上一篇中,我们解决了评估学习器泛化性能的方法,即用测试集的“测试误差”作为“泛化误差”的近似,当我们划分好训练/测试集后,那如何计算“测试误差”呢?这就是性能度量,例如:均方差,错误率等,即“测试误差”的一个评价标准。有了评估方法和性能度量,就可以计算出学习器的“测试误差”,但由于“测试误差”受到很多因素的影响,例如:算法随机性或测试集本身的选择,那如何对两个或多个学习器的性能度量结果做比较呢?这就是比较检验。最后偏差与方差是解释学习器泛化性能的一种重要工具。写到后面发现冗长之后读起来十分没有快感,故本篇主要知识点为性能度量。


2.5 性能度量


性能度量(performance measure)是衡量模型泛化能力的评价标准,在对比不同模型的能力时,使用不同的性能度量往往会导致不同的评判结果。本节除2.5.1外,其它主要介绍分类模型的性能度量。


2.5.1 最常见的性能度量


在回归任务中,即预测连续值的问题,最常用的性能度量是“均方误差”(mean squared error),很多的经典算法都是采用了MSE作为评价函数,想必大家都十分熟悉。


1.png


在分类任务中,即预测离散值的问题,最常用的是错误率和精度,错误率是分类错误的样本数占样本总数的比例,精度则是分类正确的样本数占样本总数的比例,易知:错误率+精度=1。

1.png

1.png




2.5.2 查准率/查全率/F1


错误率和精度虽然常用,但不能满足所有的需求,例如:在推荐系统中,我们只关心推送给用户的内容用户是否感兴趣(即查准率),或者说所有用户感兴趣的内容我们推送出来了多少(即查全率)。因此,使用查准/查全率更适合描述这类问题。对于二分类问题,分类结果混淆矩阵与查准/查全率定义如下:


1.png


初次接触时,FN与FP很难正确的理解,按照惯性思维容易把FN理解成:False->Negtive,即将错的预测为错的,这样FN和TN就反了,后来找到一张图,描述得很详细,为方便理解,把这张图也贴在了下边:


1.png


正如天下没有免费的午餐,查准率和查全率是一对矛盾的度量。例如我们想让推送的内容尽可能用户全都感兴趣,那只能推送我们把握高的内容,这样就漏掉了一些用户感兴趣的内容,查全率就低了;如果想让用户感兴趣的内容都被推送,那只有将所有内容都推送上,宁可错杀一千,不可放过一个,这样查准率就很低了。


“P-R曲线”正是描述查准/查全率变化的曲线,P-R曲线定义如下:根据学习器的预测结果(一般为一个实值或概率)对测试样本进行排序,将最可能是“正例”的样本排在前面,最不可能是“正例”的排在后面,按此顺序逐个把样本作为“正例”进行预测,每次计算出当前的P值和R值,如下图所示:


1.png


P-R曲线如何评估呢?若一个学习器A的P-R曲线被另一个学习器B的P-R曲线完全包住,则称:B的性能优于A。若A和B的曲线发生了交叉,则谁的曲线下的面积大,谁的性能更优。但一般来说,曲线下的面积是很难进行估算的,所以衍生出了“平衡点”(Break-Event Point,简称BEP),即当P=R时的取值,平衡点的取值越高,性能更优。


P和R指标有时会出现矛盾的情况,这样就需要综合考虑他们,最常见的方法就是F-Measure,又称F-Score。F-Measure是P和R的加权调和平均,即:


1.png


1.png


特别地,当β=1时,也就是常见的F1度量,是P和R的调和平均,当F1较高时,模型的性能越好。

1.png1.png





有时候我们会有多个二分类混淆矩阵,例如:多次训练或者在多个数据集上训练,那么估算全局性能的方法有两种,分为宏观和微观。简单理解,宏观就是先算出每个混淆矩阵的P值和R值,然后取得平均P值macro-P和平均R值macro-R,在算出Fβ或F1,而微观则是计算出混淆矩阵的平均TP、FP、TN、FN,接着进行计算P、R,进而求出Fβ或F1。

1.png



2.5.3 ROC与AUC


如上所述:学习器对测试样本的评估结果一般为一个实值或概率,设定一个阈值,大于阈值为正例,小于阈值为负例,因此这个实值的好坏直接决定了学习器的泛化性能,若将这些实值排序,则排序的好坏决定了学习器的性能高低。ROC曲线正是从这个角度出发来研究学习器的泛化性能,ROC曲线与P-R曲线十分类似,都是按照排序的顺序逐一按照正例预测,不同的是ROC曲线以“真正例率”(True Positive Rate,简称TPR)为横轴,纵轴为“假正例率”(False Positive Rate,简称FPR),ROC偏重研究基于测试样本评估值的排序好坏。

1.png1.png





简单分析图像,可以得知:当FN=0时,TN也必须0,反之也成立,我们可以画一个队列,试着使用不同的截断点(即阈值)去分割队列,来分析曲线的形状,(0,0)表示将所有的样本预测为负例,(1,1)则表示将所有的样本预测为正例,(0,1)表示正例全部出现在负例之前的理想情况,(1,0)则表示负例全部出现在正例之前的最差情况。限于篇幅,这里不再论述。


现实中的任务通常都是有限个测试样本,因此只能绘制出近似ROC曲线。绘制方法:首先根据测试样本的评估值对测试样本排序,接着按照以下规则进行绘制。


1.png


同样地,进行模型的性能比较时,若一个学习器A的ROC曲线被另一个学习器B的ROC曲线完全包住,则称B的性能优于A。若A和B的曲线发生了交叉,则谁的曲线下的面积大,谁的性能更优。ROC曲线下的面积定义为AUC(Area Uder ROC Curve),不同于P-R的是,这里的AUC是可估算的,即AOC曲线下每一个小矩形的面积之和。易知:AUC越大,证明排序的质量越好,AUC为1时,证明所有正例排在了负例的前面,AUC为0时,所有的负例排在了正例的前面。


1.png


2.5.4 代价敏感错误率与代价曲线


上面的方法中,将学习器的犯错同等对待,但在现实生活中,将正例预测成假例与将假例预测成正例的代价常常是不一样的,例如:将无疾病-->有疾病只是增多了检查,但有疾病-->无疾病却是增加了生命危险。以二分类为例,由此引入了“代价矩阵”(cost matrix)。


1.png


在非均等错误代价下,我们希望的是最小化“总体代价”,这样“代价敏感”的错误率(2.5.1节介绍)为:


1.png


同样对于ROC曲线,在非均等错误代价下,演变成了“代价曲线”,代价曲线横轴是取值在[0,1]之间的正例概率代价,式中p表示正例的概率,纵轴是取值为[0,1]的归一化代价。

1.png1.png





代价曲线的绘制很简单:设ROC曲线上一点的坐标为(TPR,FPR) ,则可相应计算出FNR,然后在代价平面上绘制一条从(0,FPR) 到(1,FNR) 的线段,线段下的面积即表示了该条件下的期望总体代价;如此将ROC 曲线土的每个点转化为代价平面上的一条线段,然后取所有线段的下界,围成的面积即为在所有条件下学习器的期望总体代价,如图所示:


1.png


在此模型的性能度量方法就介绍完了,以前一直以为均方误差和精准度就可以了,现在才发现天空如此广阔~

目录
相关文章
|
6月前
|
机器学习/深度学习 数据采集 人工智能
Machine Learning机器学习之贝叶斯网络(BayesianNetwork)
Machine Learning机器学习之贝叶斯网络(BayesianNetwork)
|
6月前
|
机器学习/深度学习 人工智能 算法
Machine Learning机器学习之统计分析
Machine Learning机器学习之统计分析
|
24天前
|
机器学习/深度学习 存储 算法
基于机器学习的地震预测(Earthquake Prediction with Machine Learning)(下)
基于机器学习的地震预测(Earthquake Prediction with Machine Learning)
24 0
|
24天前
|
机器学习/深度学习 存储 数据可视化
基于机器学习的地震预测(Earthquake Prediction with Machine Learning)(上)
基于机器学习的地震预测(Earthquake Prediction with Machine Learning)
33 0
|
机器学习/深度学习 算法 数据挖掘
周志华《Machine Learning》学习笔记(12)--降维与度量学习
样本的特征数称为维数(dimensionality),当维数非常大时,也就是现在所说的“维数灾难”,具体表现在:在高维情形下,数据样本将变得十分稀疏
210 0
周志华《Machine Learning》学习笔记(12)--降维与度量学习
|
机器学习/深度学习 算法 数据挖掘
周志华《Machine Learning》学习笔记(14)--计算学习理论
计算学习理论(computational learning theory)是通过“计算”来研究机器学习的理论
233 0
周志华《Machine Learning》学习笔记(14)--计算学习理论
|
机器学习/深度学习 算法 数据挖掘
周志华《Machine Learning》学习笔记(11)--聚类
聚类是一种经典的无监督学习方法,无监督学习的目标是通过对无标记训练样本的学习,发掘和揭示数据集本身潜在的结构与规律,即不依赖于训练数据集的类标记信息。
157 0
周志华《Machine Learning》学习笔记(11)--聚类
|
机器学习/深度学习 数据采集 存储
周志华《Machine Learning》学习笔记(13)--特征选择与稀疏学习
在机器学习中特征选择是一个重要的“数据预处理”(data preprocessing)过程,即试图从数据集的所有特征中挑选出与当前学习任务相关的特征子集,接着再利用数据子集来训练学习器
232 0
周志华《Machine Learning》学习笔记(13)--特征选择与稀疏学习
|
机器学习/深度学习 自然语言处理 算法
周志华《Machine Learning》学习笔记(16)--概率图模型
根据一些已观察到的证据来推断未知,更具哲学性地可以阐述为:未来的发展总是遵循着历史的规律。
129 0
周志华《Machine Learning》学习笔记(16)--概率图模型
|
机器学习/深度学习 算法 数据挖掘
周志华《Machine Learning》学习笔记(15)--半监督学习
监督学习指的是训练样本包含标记信息的学习任务
221 0
周志华《Machine Learning》学习笔记(15)--半监督学习
下一篇
无影云桌面