第 6 章 递归

简介: 简单的说: 递归就是方法自己调用自己,每次调用时传入不同的变量,递归有助于编程者解决复杂的问题,同时可以让代码变得简洁。

1、递归介绍

1.1、递归应用场景

  • 看个实际应用场景, 迷宫问题(回溯), 递归(Recursion)

1.2、递归的概念

  • 简单的说: 递归就是方法自己调用自己,每次调用时传入不同的变量,递归有助于编程者解决复杂的问题,同时可以让代码变得简洁。

1.3、递归调用机制

  • 打印问题

  • 阶乘问题
// 阶乘问题
public static int factorial(int n) {
    if (n == 1) {
        return 1;
    } else {
        return factorial(n - 1) * n;
    }
}


1.4、递归能解决什么问题

  • 各种数学问题如:8 皇后问题,汉诺塔,阶乘问题,迷宫问题,球和篮子的问题(google 编程大赛)
  • 各种算法中也会使用到递归, 比如快排, 归并排序, 二分查找, 分治算法等.
  • 将用栈解决的问题 --> 递归代码比较简洁

1.5、递归需遵循的规则

  • 执行一个方法时, 就创建一个新的受保护的独立空间(一个线程有自己独立的一个栈空间,每个方法调用对应着一个栈帧)
  • 方法的局部变量是独立的, 不会相互影响, 比如 n 变量
  • 如果方法中使用的是引用类型变量(比如数组), 就会共享该引用类型的数据
  • 递归必须向退出递归的条件逼近, 否则就是无限递归,出现 StackOverflowError, 死龟了 😃
  • 当一个方法执行完毕,或者遇到return,就会返回,遵守谁调用,就将结果返回给谁,同时当方法执行完毕或者返回时,该方法也就执行完毕。

2、递归-迷宫问题

2.1、代码思路

  • 使用二维数组 map[][] 模拟迷宫
  • 约定: 当 map[i][j]0 表示该点没有走过;当为 1 表示墙;2 表示通路可以走 ;3 表示该点已经走过,但是走不通
  • setWay() 方法用于找路,true 表示该路可以走通,false 表示该路走不通
  • 在走迷宫时,需要确定一个策略(方法) 下->右->上->左 , 一步一步向前试探,如果该点走不通,再回溯

每当走到一个点时,将该点置为 2 ,暂时假设该路能走通,至于到底走不走得通,得看后面有没有找到通路

  • 如果后面的路能走通,从最后一个点开始返回,整个 setWay() 递归调用链都返回 true
  • 如果后面的路不能走通,那么将当前的点设置为 3 ,表示是死路,走不通,回溯至上一个点,看看其他方向能不能走通

2.2、代码实现

  • 迷宫问题递归解法
// 使用递归回溯来给小球找路
// 说明
// 1. map 表示地图
// 2. i,j 表示从地图的哪个位置开始出发 (1,1)
// 3. 如果小球能到 map[6][5] 位置,则说明通路找到.
// 4. 约定: 当map[i][j] 为 0 表示该点没有走过 当为 1 表示墙 ; 2 表示通路可以走 ; 3 表示该点已经走过,但是走不通
// 5. 在走迷宫时,需要确定一个策略(方法) 下->右->上->左 , 如果该点走不通,再回溯
/**
 * 
 * @param map 表示地图
 * @param i   从哪个位置开始找
 * @param j
 * @return 如果找到通路,就返回true, 否则返回false
 */
public static boolean setWay(int[][] map, int i, int j) {
  if (map[6][5] == 2) { // 通路已经找到ok
    return true;
  } else {
    if (map[i][j] == 0) { // 如果当前这个点还没有走过
      // 按照策略 下->右->上->左 走
      map[i][j] = 2; // 假定该点是可以走通.
      if (setWay(map, i + 1, j)) {// 向下走
        return true;
      } else if (setWay(map, i, j + 1)) { // 向右走
        return true;
      } else if (setWay(map, i - 1, j)) { // 向上走
        return true;
      } else if (setWay(map, i, j - 1)) { // 向左走
        return true;
      } else {
        // 说明该点是走不通,是死路
        map[i][j] = 3;
        return false;
      }
    } else { // 如果map[i][j] != 0 , 可能是 1, 2, 3
      return false;
    }
  }
}
// 修改找路的策略,改成 上->右->下->左
public static boolean setWay2(int[][] map, int i, int j) {
  if (map[6][5] == 2) { // 通路已经找到ok
    return true;
  } else {
    if (map[i][j] == 0) { // 如果当前这个点还没有走过
      // 按照策略 上->右->下->左
      map[i][j] = 2; // 假定该点是可以走通.
      if (setWay2(map, i - 1, j)) {// 向上走
        return true;
      } else if (setWay2(map, i, j + 1)) { // 向右走
        return true;
      } else if (setWay2(map, i + 1, j)) { // 向下走
        return true;
      } else if (setWay2(map, i, j - 1)) { // 向左走
        return true;
      } else {
        // 说明该点是走不通,是死路
        map[i][j] = 3;
        return false;
      }
    } else { // 如果map[i][j] != 0 , 可能是 1(墙体), 2(已经走过的格子), 3(已经走过,并且无法走通的格子) 
      return false;
    }
  }
}
  • 测试代码
public static void main(String[] args) {
    // 先创建一个二维数组,模拟迷宫
    // 地图
    int[][] map = new int[8][7];
    // 使用1 表示墙
    // 上下全部置为1
    for (int i = 0; i < 7; i++) {
        map[0][i] = 1;
        map[7][i] = 1;
    }
    // 左右全部置为1
    for (int i = 0; i < 8; i++) {
        map[i][0] = 1;
        map[i][6] = 1;
    }
    // 设置挡板, 1 表示
    map[3][1] = 1;
    map[3][2] = 1;
    map[4][4] = 1;
    map[5][4] = 1;
    map[6][4] = 1;
    map[4][4] = 1;
    // 输出地图
    System.out.println("地图的情况");
    for (int i = 0; i < 8; i++) {
        for (int j = 0; j < 7; j++) {
            System.out.print(map[i][j] + " ");
        }
        System.out.println();
    }
    // 使用递归回溯给小球找路
    setWay(map, 1, 1);
    // setWay2(map, 1, 1);
    // 输出新的地图, 小球走过,并标识过的地图
    System.out.println("小球走过,并标识过的 地图的情况");
    for (int i = 0; i < 8; i++) {
        for (int j = 0; j < 7; j++) {
            System.out.print(map[i][j] + " ");
        }
        System.out.println();
    }
}
  • 程序运行结果
地图的情况
1 1 1 1 1 1 1 
1 0 0 0 0 0 1 
1 0 0 0 0 0 1 
1 1 1 0 0 0 1 
1 0 0 0 1 0 1 
1 0 0 0 1 0 1 
1 0 0 0 1 0 1 
1 1 1 1 1 1 1 
小球走过,并标识过的 地图的情况
1 1 1 1 1 1 1 
1 2 0 0 0 0 1 
1 2 2 2 0 0 1 
1 1 1 2 2 2 1 
1 3 3 3 1 2 1 
1 3 3 3 1 2 1 
1 3 3 3 1 2 1 
1 1 1 1 1 1 1 
  • 搞不清逻辑的话,可以自己玩一玩
地图的情况
1 1 1 1 1 1 1 
1 0 0 0 0 0 1 
1 0 0 0 0 0 1 
1 1 1 0 0 0 1 
1 0 0 0 1 0 1 
1 0 0 0 1 0 1 
1 0 0 0 1 0 1 
1 1 1 1 1 1 1 


程序执行逻辑分析

  • 第一阶段:按照 下->右->上->左 的策略,走入了死胡同


1 1 1 1 1 1 1 
1 2 0 0 0 0 1 
1 2 2 2 0 0 1 
1 1 1 2 0 0 1 
1 2 2 2 1 0 1 
1 2 2 2 1 0 1 
1 2 2 2 1 0 1 
1 1 1 1 1 1 1 
  • 第二阶段:开始回溯,标记此路不通


1 1 1 1 1 1 1 
1 2 0 0 0 0 1 
1 2 2 2 0 0 1 
1 1 1 2 0 0 1 
1 3 3 3 1 0 1 
1 3 3 3 1 0 1 
1 3 3 3 1 0 1 
1 1 1 1 1 1 1 


  • 寻找到了通往天堂的路径


1 1 1 1 1 1 1 
1 2 0 0 0 0 1 
1 2 2 2 0 0 1 
1 1 1 2 2 2 1 
1 3 3 3 1 2 1 
1 3 3 3 1 2 1 
1 3 3 3 1 2 1 
1 1 1 1 1 1 1 


2.3、思考题

  • 求出最短路径(枚举可能的找路策略)

2.4、总结

  • 刚开始我还觉得很难理解,想了想,这和递归遍历文件夹不也是有相同之处的吗?
  • 如果不进入文件夹看看,我就永远不知道这个文件夹里面是否还有子文件和子文件夹,我们需要遍历到一个文件夹的最深处,然后触底反弹
  • 如果我没有到达终点,这条路到底通不通,我并不知道,所以我先试探性地走到终点,然后从终点往前回溯?
  • 死路咋办?我也是先试探性地往前走,走不通,我回溯到之前的点,再尝试新的走法

3、递归-八皇后问题(回溯算法 )

3.1、八皇后问题介绍

  • 八皇后问题, 是一个古老而著名的问题, 是回溯算法的典型案例。 该问题是国际西洋棋棋手马克斯· 贝瑟尔于1848 年提出: 在 8× 8 格的国际象棋上摆放八个皇后, 使其不能互相攻击, 即: 任意两个皇后都不能处于同一行、同一列或同一斜线上, 问有多少种摆法(92)。

3.2、代码思路

  • 第一个皇后先放第一行第一列
  • 第二个皇后放在第二行第一列、 然后判断是否 OK, 如果不 OK, 继续放在第二列、 第三列、 依次把所有列都放完, 找到一个合适
  • 继续第三个皇后, 还是第一列、 第二列…… ,直到第 8 个皇后也能放在一个不冲突的位置, 算是找到了一个正确解
  • 当得到一个正确解时, 在栈回退到上一个栈时, 就会开始回溯, 即将第一个皇后, 放到第一列的所有正确解,全部得到
  • 然后回头继续第一个皇后放第二列, 后面继续循环执行 1, 2, 3, 4 的步骤

3.3、代码实现

关于 array 数组的说明:

  • 理论上应该创建一个二维数组来表示棋盘, 但是实际上可以通过算法, 用一个一维数组即可解决问题: array[8] = {0 , 4, 7, 5, 2, 6, 1, 3}
  • array 数组的下标代表皇后所在的行数,array 数组中的值代表皇后所在的列数
  • 比如 a[0] = 0 ,则表示第一个皇后在第一行第一列

judge(int n) 方法:

  • 参数 n :表示当前在放置第 n 个皇后
  • 判断是否在同一列:array[i] == array[n]
  • 判断是否在同一斜线上:Math.abs(n - i) == Math.abs(array[n] - array[i]) ,即判断行差绝对值与列差绝对值是否相等

check(int n) 方法:

  • 参数 n :当前要放置第几个皇后(索引从 0 开始,n=8 时表示八皇后放置完毕)
  • 当前放置的皇后,需要与之前的皇后位置进行比较,看看冲不冲突,所以需要一个 for 循环:for (int i = 0; i < n; i++){
public class Queue8 {
  // 定义一个max表示共有多少个皇后
  int max = 8;
  // 定义数组array, 保存皇后放置位置的结果,比如 arr = {0 , 4, 7, 5, 2, 6, 1, 3}
  int[] array = new int[max];
  static int count = 0;
  static int judgeCount = 0;
  public static void main(String[] args) {
    // 测试一把 , 8皇后是否正确
    Queue8 queue8 = new Queue8();
    queue8.check(0);
    System.out.printf("一共有%d种解法\n", count);
    System.out.printf("一共判断冲突的次数%d次", judgeCount); // 1.5w
  }
  // 编写一个方法,放置第n个皇后
  // 特别注意: check 是 每一次递归时,进入到check中都有 for(int i = 0; i < max; i++),因此会有回溯
  private void check(int n) {
    if (n == max) { // n = 8 , 其实8个皇后就已经放好,因为索引从 0 开始
      print();
      return;
    }
    // 依次放入皇后,并判断是否冲突
    for (int i = 0; i < max; i++) {
      // 先把当前这个皇后 n , 放到该行的第1列
      array[n] = i;
      // 判断当放置第n个皇后到i列时,是否冲突
      if (judge(n)) { // 不冲突
        // 接着放n+1个皇后,即开始递归
        check(n + 1); 
      }
      // 如果冲突,就继续执行 array[n] = i; 即将第n个皇后,放置在本行的后移的一个位置
    }
  }
  // 查看当我们放置第n个皇后, 就去检测该皇后是否和前面已经摆放的皇后冲突
  /**
   * 
   * @param n 表示第n个皇后
   * @return
   */
  private boolean judge(int n) {
    judgeCount++;
    for (int i = 0; i < n; i++) {
      // 说明
      // 1. array[i] == array[n] 表示判断 第n个皇后是否和前面的n-1个皇后在同一列
      // 2. Math.abs(n-i) == Math.abs(array[n] - array[i]) 表示判断第n个皇后是否和第i皇后是否在同一斜线
      // n = 1 放置第 2列 1 n = 1 array[1] = 1
      // Math.abs(1-0) == 1 Math.abs(array[n] - array[i]) = Math.abs(1-0) = 1
      // 3. 判断是否在同一行, 没有必要,n 每次都在递增
      if (array[i] == array[n] || Math.abs(n - i) == Math.abs(array[n] - array[i])) {
        return false;
      }
    }
    return true;
  }
  // 写一个方法,可以将皇后摆放的位置输出
  private void print() {
    count++;
    for (int i = 0; i < array.length; i++) {
      System.out.print(array[i] + " ");
    }
    System.out.println();
  }
}
  • 程序运行结果
public class Queue8 {
  // 定义一个max表示共有多少个皇后
  int max = 8;
  // 定义数组array, 保存皇后放置位置的结果,比如 arr = {0 , 4, 7, 5, 2, 6, 1, 3}
  int[] array = new int[max];
  static int count = 0;
  static int judgeCount = 0;
  public static void main(String[] args) {
    // 测试一把 , 8皇后是否正确
    Queue8 queue8 = new Queue8();
    queue8.check(0);
    System.out.printf("一共有%d种解法\n", count);
    System.out.printf("一共判断冲突的次数%d次", judgeCount); // 1.5w
  }
  // 编写一个方法,放置第n个皇后
  // 特别注意: check 是 每一次递归时,进入到check中都有 for(int i = 0; i < max; i++),因此会有回溯
  private void check(int n) {
    if (n == max) { // n = 8 , 其实8个皇后就已经放好,因为索引从 0 开始
      print();
      return;
    }
    // 依次放入皇后,并判断是否冲突
    for (int i = 0; i < max; i++) {
      // 先把当前这个皇后 n , 放到该行的第1列
      array[n] = i;
      // 判断当放置第n个皇后到i列时,是否冲突
      if (judge(n)) { // 不冲突
        // 接着放n+1个皇后,即开始递归
        check(n + 1); 
      }
      // 如果冲突,就继续执行 array[n] = i; 即将第n个皇后,放置在本行的后移的一个位置
    }
  }
  // 查看当我们放置第n个皇后, 就去检测该皇后是否和前面已经摆放的皇后冲突
  /**
   * 
   * @param n 表示第n个皇后
   * @return
   */
  private boolean judge(int n) {
    judgeCount++;
    for (int i = 0; i < n; i++) {
      // 说明
      // 1. array[i] == array[n] 表示判断 第n个皇后是否和前面的n-1个皇后在同一列
      // 2. Math.abs(n-i) == Math.abs(array[n] - array[i]) 表示判断第n个皇后是否和第i皇后是否在同一斜线
      // n = 1 放置第 2列 1 n = 1 array[1] = 1
      // Math.abs(1-0) == 1 Math.abs(array[n] - array[i]) = Math.abs(1-0) = 1
      // 3. 判断是否在同一行, 没有必要,n 每次都在递增
      if (array[i] == array[n] || Math.abs(n - i) == Math.abs(array[n] - array[i])) {
        return false;
      }
    }
    return true;
  }
  // 写一个方法,可以将皇后摆放的位置输出
  private void print() {
    count++;
    for (int i = 0; i < array.length; i++) {
      System.out.print(array[i] + " ");
    }
    System.out.println();
  }
}

3.4、总结

  • 还是和走迷宫一样,当前摆法行不行,需要摆完第八个皇后我才能知道

上面的解法其实是枚举

  • 第一个皇后摆在第一行第一列,然后开始试探,第二个皇后摆在哪里,才不会和第一个皇后冲突,第三个皇后摆在哪里,才不会和第二个皇后冲突。。。
  • 如果遇到冲突,则把当前正在放置的皇后往后挪一格,如果 8 列都不行,那么就回溯至上一级皇后,让它试着挪一挪


目录
相关文章
|
3月前
使用递归
【10月更文挑战第20天】使用递归。
20 8
|
2月前
递归
【10月更文挑战第23天】递归。
20 4
|
8月前
|
算法 C语言
c递归
c递归
50 2
|
存储
【递归知识+练习】
【递归知识+练习】
78 0
|
JavaScript 前端开发
什么是递归?
什么是递归?
160 0
|
Java 数据安全/隐私保护 决策智能
字符串全排列(递归)
字符串全排列,递归的应用
167 0
|
算法 Python
递归的使用
递归的使用
57 0
|
机器学习/深度学习 BI
递归问题
递归问题