《智能数据时代:企业大数据战略与实战》一3.5 步步为营

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介:

本节书摘来自华章出版社《智能数据时代:企业大数据战略与实战》一书中的第3章,第3.5节,作者 TalkingData ,更多章节内容可以访问云栖社区“华章计算机”公众号查看

3.5 步步为营

常言道“千里之行,始于足下”,而创造有效大数据分析程序的过程也符合这一道理。然而,要想成功达成目标,我们需要走的不只是一步。推行大数据分析计划的组织,需要强有力的执行计划来确保分析流程适合自身需求。要想为大数据计划做好准备,选择出将要使用的技术只是旅程的半途。除了确认正确的数据库软件和分析工具以外,相关企业还需要落实技术基础设施,真正为进入下一步骤做好准备,由此才可制定出真切可行的战略。
高效项目管理过程对创建成功的大数据分析程序有至关重要的作用,这一点也是不可忽视的。为确保系统的顺利部署,企业在实施相关步骤时可以参考以下建议。
确定应保留和应删除的数据内容。就其本质而言,大数据分析项目需要使用大规模的数据集。但这并不意味着我们需要分析公司所有的数据源或其中包含的所有信息。组织需要找出在洞察性分析时,能够带来真正价值的战略性数据。例如我们需要哪些信息组合才能了解保留关键客户的要素?或者需要哪些数据才能揭示股票市场交易中的隐藏模式?在规划阶段关注项目的业务目标有助于组织进行必要精确分析,在这些分析完成后相关组织可以并应该努力找出需要哪些数据才能达成上述业务目标。在某些情况下,完成上述过程的确需要涵盖一切数据。但在其他的情况下我们只需利用一部分的大数据即可满足需求。
构建有效的业务规则并克服此类规则的复杂性。如何克服复杂性是大多数大数据分析计划的关键所在。为了得到正确的分析结果,至关重要的是要在处理过程中涵盖以业务为中心的数据所有者,由此才可确保能提前确认所有必要的业务规则。一旦能够确认规则,技术人员就可以评估这些规则所带来的复杂度,以及需要付诸哪些努力才能将输入的数据转换为有相关性且有价值的调查结果。至此我们已经为下一个实施阶段做好了准备。
以协作方式将业务规则转换为相关分析数据。业务规则只是开发有效大数据分析应用程序的第一步。接下来,IT或专业分析人员需要创建产生必要输出所需要的分析查询条目和算法。但具体的行动需要落到实处。查询条目的质量和准确性越高,操作时需要返工的次数就越少。在许多项目中,项目团队和业务部门之间缺乏沟通的情况会导致他们需要不断地进行重复。持续的沟通和协作能大大减少分析开发过程中的坎坷。
制定维护计划。除了最初的开发工作,成功的大数据分析计划还需要持续的关注和更新。定期维护查询条目和始终为业务需求变化做好准备是重要的工作,但它们仅代表管理分析程序的一个方面。数据量会不断增加,业务用户对分析过程的熟悉程度也会不断提升,随之必然会出现更多的问题。分析团队必须能够及时跟进并满足其他的请求。此外,作为大数据分析硬件和软件选项评估过程的一部分,我们需要评估这些软硬件在动态商业环境中能否适应迭代开发过程的需要。只有满足适应不断变化的要求,分析系统的价值才不会随着时间的流逝而流失。
考虑到每一名用户。随着自助式BI功能的热度越来越高,可以认为对最终用户的关注已经成为了大数据分析程序中的关键因素。拥有可以处理大型数据集,同时具备分析结构化和非结构化信息的强大IT基础架构都是相当重要的,但开发好用并且易用的系统也同样重要,这意味着我们需要考虑到用户的各种需求。不同类型的人员——从高级管理人员到操作工、业务分析师和统计人员——会以不同的方式访问大数据分析应用程序并根据自己的需要来使用相关工具以确保其项目整体上的成功。在这种情况下,必须提供不同等级的互动功能,才能满足用户的期望,并让分析工具熟练程度不同的用户都能加以利用。举例来说,通过建立仪表板和数据可视化处理,就能以一种容易理解的方式向并不擅长自行查询大数据分析数据的业务经理和工人呈现调查结果。
没有一种方法可以确保大数据分析的成功。但是遵循一系列框架和最佳做法(包括本文概述的建议举措)可以帮助相关组织维持正确的大数据分析规划方向。大数据安装的技术细节相当繁杂,我们需要对其进行深入的研究和考量。但仅做到这些还不够:我们还必须考虑技术和业务方面的各种问题,才能确保组织能通过对大数据分析的投资获得所期待的结果。

相关实践学习
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
相关文章
|
2月前
|
机器学习/深度学习 传感器 分布式计算
数据才是真救命的:聊聊如何用大数据提升灾难预警的精准度
数据才是真救命的:聊聊如何用大数据提升灾难预警的精准度
192 14
|
4月前
|
数据采集 分布式计算 DataWorks
ODPS在某公共数据项目上的实践
本项目基于公共数据定义及ODPS与DataWorks技术,构建一体化智能化数据平台,涵盖数据目录、归集、治理、共享与开放六大目标。通过十大子系统实现全流程管理,强化数据安全与流通,提升业务效率与决策能力,助力数字化改革。
168 4
|
3月前
|
机器学习/深度学习 运维 监控
运维不怕事多,就怕没数据——用大数据喂饱你的运维策略
运维不怕事多,就怕没数据——用大数据喂饱你的运维策略
157 0
|
4月前
|
分布式计算 DataWorks 数据处理
在数据浪潮中前行:记录一次我与ODPS的实践、思考与展望
本文详细介绍了在 AI 时代背景下,如何利用阿里云 ODPS 平台(尤其是 MaxCompute)进行分布式多模态数据处理的实践过程。内容涵盖技术架构解析、完整操作流程、实际部署步骤以及未来发展方向,同时结合 CSDN 博文深入探讨了多模态数据处理的技术挑战与创新路径,为企业提供高效、低成本的大规模数据处理方案。
297 3
|
4月前
|
SQL 人工智能 分布式计算
ODPS:数据浪潮中的成长与突围
本文讲述了作者在大数据浪潮中,通过引入阿里云ODPS体系(包括MaxCompute、DataWorks、Hologres)解决数据处理瓶颈、实现业务突破与个人成长的故事。从被海量数据困扰到构建“离线+实时”数据架构,ODPS不仅提升了数据处理效率,更推动了技术能力与业务影响力的双重跃迁。
|
4月前
|
存储 SQL 监控
数据中台架构解析:湖仓一体的实战设计
在数据量激增的数字化时代,企业面临数据分散、使用效率低等问题。数据中台作为统一管理与应用数据的核心平台,结合湖仓一体架构,打通数据壁垒,实现高效流转与分析。本文详解湖仓一体的设计与落地实践,助力企业构建统一、灵活的数据底座,驱动业务决策与创新。
|
2月前
|
传感器 人工智能 监控
数据下田,庄稼不“瞎种”——聊聊大数据如何帮农业提效
数据下田,庄稼不“瞎种”——聊聊大数据如何帮农业提效
142 14
|
1月前
|
传感器 人工智能 监控
拔俗多模态跨尺度大数据AI分析平台:让复杂数据“开口说话”的智能引擎
在数字化时代,多模态跨尺度大数据AI分析平台应运而生,打破数据孤岛,融合图像、文本、视频等多源信息,贯通微观与宏观尺度,实现智能诊断、预测与决策,广泛应用于医疗、制造、金融等领域,推动AI从“看懂”到“会思考”的跃迁。
|
2月前
|
机器学习/深度学习 传感器 监控
吃得安心靠数据?聊聊用大数据盯紧咱们的餐桌安全
吃得安心靠数据?聊聊用大数据盯紧咱们的餐桌安全
124 1
|
2月前
|
数据采集 自动驾驶 机器人
数据喂得好,机器人才能学得快:大数据对智能机器人训练的真正影响
数据喂得好,机器人才能学得快:大数据对智能机器人训练的真正影响
211 1

热门文章

最新文章