MongoDB · 特性分析 · MMAPv1 存储引擎原理

本文涉及的产品
云数据库 MongoDB,独享型 2核8GB
推荐场景:
构建全方位客户视图
简介:

MongoDB 的 mongod 服务管理一个数据目录,可包含多个DB,每个DB的数据单独组织,本文主要介绍 MMAPv1 存储引擎的数据组织方式。

Database

每个 Database(DB) 由一个.ns文件及若干个数据文件组成

$ll mydb.*
-rw-------  1 ydzhang  staff  67108864  7  4 14:05 mydb.0
-rw-------  1 ydzhang  staff  16777216  7  4 14:05 mydb.ns

数据文件从0开始编号,依次为mydb.0、mydb.1、mydb.2等,文件大小从64MB起,依次倍增,最大为2GB。

Namespace

每个 DB 包含多个 namespace(对应 mongodb 的 collection 名),mydb.ns实际上是一个hash表(采用线性探测方式解决冲突),用于快速定位某个 namespace 的起始位置。

hash表里的一个节点包含的元数据结构如下,每个节点大小为 628Bytes,16M 的 NS 文件最多可存储26715个 namespace。

struct Node {
    int hash;
    Namespace key;
    NamespaceDetails value;
};
  • key 为 namespace 的名字,为固定长度128字节的字符数组;
  • hash 为 namespce 的 hash 值,用于快速查找;
  • value 包含一个 namespace 所有的元数据。

namespace元数据结构如下:

class NamespaceDetails {
    DiskLoc firstExtent; // 第一个extent位置
    DiskLoc lastExtent;  // 最后一个extent位置
    DiskLoc deletedListSmall[SmallBuckets];
    // 不同大小的删除记录列表
    ...
};

其中 DiskLoc 代表某个数据文件的具体偏移位置,数据文件使用 mmap 映射到内存空间进行管理,内存的管理(哪些数据何时换入/换出)完全交给OS管理。

 class DiskLoc {
    int _a;  // 数据文件编号,如mydb.0编号为0
    int ofs; // 文件内部偏移
 };

数据文件

每个数据文件被划分成多个extent,每个 extent 只包含一个 namespace 的数据,同一个 namespace 的所有 extent 之间以双向链表形式组织。

namesapce 的元数据里包含指向第一个及最后一个 extent 的位置指针,通过这些信息,就可以遍历一个 namespace 下的所有 extent 数据。

每个数据文件包含一个固定长度头部DataFileHeader:

 class DataFileHeader {
    DataFileVersion version;
    int fileLength;
    DiskLoc unused;
    int unusedLength;
    DiskLoc freeListStart;
    DiskLoc freeListEnd;
    char reserve[];
 };

Header 中包含数据文件版本、文件大小、未使用空间位置及长度、空闲 extent 链表起始及结束位置。extent被回收时,就会放到数据文件对应的空闲 extent 链表里。

unusedLength 为数据文件未被使用过的空间长度,unused 则指向未使用空间的起始位置。

Extent

每个 extent 包含多个 record(对应 mongodb 的 document),同一个 extent 下的所有 record 以双向链表形式组织。

struct Extent {
    unsigned magic;  // 用于检查extent数据有效性
    DiskLoc myLoc;   // extent自身位置

    /* 前一个/后一个 extent位置指针 */
    DiskLoc xnext;
    DiskLoc xprev;

    int length;  // extent总长度

    DiskLoc firstRecord;  // extent内第一个record位置指针
    DiskLoc lastRecord;   // extent内最后一个record位置指针
    char _extentData[4];  // extent数据
};

Record

每个Record对应mongodb里的一个文档,每个Record包含固定长度16bytes的描述信息。

class Record {
    int _lengthWithHeaders;  // Record长度
    int _extentOfs;          // Record所在的extent位置指针
    int _nextOfs;            // 前一个Record位置信息
    int _prevOfs;            // 后一个Record位置信息
    char _data[4];           // Record数据
};

Record被删除后,会以 DeleteRecord 的形式存储,其前两个字段与 Record 是一致的。

class DeletedRecord {
   int _lengthWithHeaders;  // record长度
   int _extentOfs;          // record所在的extent位置指针
   DiskLoc _nextDeleted;    // 下一个已删除记录的位置
};

一个 namespace 下的所有的已删除记录(可以回收并复用的存储空间)以单向链表的形式,为了最大化存储空间利用率,不同size(32B、64B、128B…)的记录被挂在不同的链表上,NamespaceDetail 里的 deletedListSmall/deletedListLarge 包含指向这些不同大小链表头部的指针。

MongoDB storage format

MongoDB storage format

写入Record

  1. 检查对应的namespace 对应的删除记录链表里是否有合适的 DeletedRecord 可以利用,如果有,则直接复用删除空间写入记录;
  2. 检查数据文件的 freeList 里是否有合适大小的空闲 extent 可以利用,如果有则直接利用空闲的extent,将记录写入;
  3. 第1、2步都不成功,则写创建新的 extent 写入记录;创建新extent时,如果当前的数据文件没有足够的空闲空间,则创建新的数据文件。

删除Record

删除的记录会以 DeleteRecord 的形式插入到对应集合的删除链表里,删除的空间在下一次写入新的记录时可能会被利用上;但也有可能一直用不上而浪费。比如某个128Bytes大小的记录被删除后,接下来写入的记录一直大于128B,则这个128B的 DeletedRecord 不能有效的被利用。

当删除很多时,可能产生很多不能重复利用的“存储碎片”,从而导致存储空间大量浪费;可通过对集合进行 compact 来整理存储碎片。

更新Record

更新Record时,分2种情况

  1. 更新的Record比原来小,可以直接复用现有的空间(原地更新);多余的空间如果足够多,会将剩余空间插入到DeletedRecord链表;
  2. 更新的Record比原来大,更新相当于删除 + 新写入,原来的空间会插入到DeletedRecord链表里。

更新跟删除类似,也有可能产生很多存储碎片;如果业务场景里更新很多,可通过合理设置 Record Padding,尽量让每次更新都直接复用现有存储空间。

查询Record

没有索引的情况下,查询某个Record需要遍历整个集合,读取出符合条件的Record;如果经常需要根据每个纬度查询Record,则需要给集合建立索引以提高查询效率。

相关实践学习
MongoDB数据库入门
MongoDB数据库入门实验。
快速掌握 MongoDB 数据库
本课程主要讲解MongoDB数据库的基本知识,包括MongoDB数据库的安装、配置、服务的启动、数据的CRUD操作函数使用、MongoDB索引的使用(唯一索引、地理索引、过期索引、全文索引等)、MapReduce操作实现、用户管理、Java对MongoDB的操作支持(基于2.x驱动与3.x驱动的完全讲解)。 通过学习此课程,读者将具备MongoDB数据库的开发能力,并且能够使用MongoDB进行项目开发。   相关的阿里云产品:云数据库 MongoDB版 云数据库MongoDB版支持ReplicaSet和Sharding两种部署架构,具备安全审计,时间点备份等多项企业能力。在互联网、物联网、游戏、金融等领域被广泛采用。 云数据库MongoDB版(ApsaraDB for MongoDB)完全兼容MongoDB协议,基于飞天分布式系统和高可靠存储引擎,提供多节点高可用架构、弹性扩容、容灾、备份回滚、性能优化等解决方案。 产品详情: https://www.aliyun.com/product/mongodb
目录
相关文章
|
存储 负载均衡 NoSQL
|
4月前
|
存储 缓存 NoSQL
MongoDB内部的存储原理
这篇文章详细介绍了MongoDB的内部存储原理,包括存储引擎WiredTiger的架构、btree与b+tree的比较、cache机制、page结构、写操作流程、checkpoint和WAL日志,以及分布式存储的架构。
141 1
MongoDB内部的存储原理
|
7月前
|
存储 监控 NoSQL
MongoDB索引解析:工作原理、类型选择及优化策略
MongoDB索引解析:工作原理、类型选择及优化策略
|
6月前
|
存储 NoSQL MongoDB
MongoDB 索引原理与索引优化
MongoDB 索引原理与索引优化
126 1
|
7月前
|
存储 JSON NoSQL
深入解析MongoDB的存储原理
深入解析MongoDB的存储原理
深入解析MongoDB的存储原理
|
8月前
|
监控 NoSQL 容灾
MongoDB复制集原理:高可用性与数据一致性的保障
【4月更文挑战第30天】MongoDB复制集提供高可用性和数据一致性,通过在多个服务器间复制数据。复制集包含主节点和从节点,写操作在主节点执行,然后异步复制到从节点。优势包括故障切换、数据冗余、负载均衡和容灾备份。当主节点故障,其他节点会选举新主节点,确保服务连续性。配置复制集涉及规划节点、配置复制集、初始化和监控维护。复制集是实现数据库可靠性的核心。
|
8月前
|
存储 NoSQL MongoDB
【MongoDB】MongoDB 索引结构底层原理分析
【4月更文挑战第1天】【MongoDB】MongoDB 索引结构底层原理分析
|
8月前
|
存储 运维 负载均衡
MongoDB详解(二)——MongoDB架构与原理
MongoDB详解(二)——MongoDB架构与原理
294 2
|
存储 缓存 NoSQL
MongoDB基础及原理介绍
MongoDB基础及原理介绍
|
存储 NoSQL MongoDB
图解MongoDB集群部署原理(3)
MongoDB的集群部署方案中有三类角色:实际数据存储结点、配置文件存储结点和路由接入结点。
149 0