Python机器学习算法入门教程(三)

简介: 本节讲解如何构建线性回归算法中的“线性模型”,所谓“线性”其实就是一条“直线”。因此,本节开篇首先普及一下初中的数学知识“一次函数”。

构建线性回归模型

本节讲解如何构建线性回归算法中的“线性模型”,所谓“线性”其实就是一条“直线”。因此,本节开篇首先普及一下初中的数学知识“一次函数”。

一次函数

一次函数就是最简单的“线性模型”,其直线方程表达式为y = kx + b,其中 k 表示斜率,b 表示截距,x 为自变量,y 表示因变量。下面展示了 y = 2x + 3 的函数图像:

函数中斜率 k 与 截距 b 控制着“直线”的“旋转”与“平移”。如果斜率 k 逐渐减小,则“直线”会向着“顺时针”方向旋转,为 k= 0 的时候与 x 轴平行。截距 b 控制“直接”的上下平移,b 为正数则向上平移,b 为负数则表示向下平移。

在机器学习中斜率 k 通常用 w 表示,也就是权重系数,因此“线性方程”通过控制 w 与 b 来实现“直线”与数据点最大程度的“拟合”。如下图(黑色 x 号代表数据样本)所示:

线性拟合

线性方程不能完全等同于“直线方程”,因为前者可以描述多维空间内直接,而后者只能描述二维平面内的 x 与 y 的关系。

构建线性模型

在线性回归问题中数据样本会呈现“线性”分布的态势,因此我们使用“线性方程”来最大程度的“拟合数据”。线性方程预测的结果具有连续性,下面通过示例简单说明:小亮今年 8 岁,去年 7 岁,前年 6 岁,那么他明年几岁呢?估计你闭着眼都能想到答案,但是我们要从机器学习的角度去看待这个问题。

首先年龄、时间是一组连续性的数据,也就是因变量随着自变量规律性地连续增长,显然它是一个“回归问题”。下面把上述数据以二维数组的形式表示出来,构建一个数据集,如下所示:

[[2021,8],

[2020,7],

[2019,6]]

我们知道两个点就可以确定一条“直线”,因此将两组数据带入 y = kx + b,最终求得“线程方程”:

y = x - 2013

上述函数就是所谓的“假设函数”,通过它即可实现对结果的预测。这个函数的图像如下所示:

假设函数图像

从上述函数图像可以看出,直线对数据样本恰好“拟合”。这是最标准的拟合直线,通过它就可以“预测”出小亮明年的年龄了。上述示例就构建了一个简单的的“线性模型”。读到这里你会惊叹“怎么如此简单”,其实线性模型就是这么简单。对于机器学习而言,最关键的就是“学习”,在大量的数据中,通过不断优化参数,找到一条最佳的拟合“直线”,最终预测出一个理想的结果。

提示:上述示例是一个理想化的“线性模型”,在实际应用中要复杂的多,不过“万变不离其宗”

机器学习是一门数学、统计学、计算机科学的结合技术,因此它有着独特的知识体系,比如会将数据集分为“训练集”与“测试集”,而且还会通过“损失函数”来不断优化预测结果,关于这些知识会在后需内容详细介绍。

梯度下降求极值

上面我们从数学的角度解释了假设函数和损失函数,我们最终的目的要得到一个最佳的“拟合”直线,因此就需要将损失函数的偏差值减到最小,我们把寻找极小值的过程称为“优化方法”,常用的优化方法有很多,比如共轭梯度法、梯度下降法、牛顿法和拟牛顿法。你可能对于上述方法感到陌生,甚至于害怕,其实大可不必,它们只不过应用了一些数学公式而已。

本节我们重点学习梯度下降法(Gradient Descent),在认识该方法之前,我们先复习一下高中时的数学知识。

导数

导数也叫导函数,或者微商,它是微积分中的重要基础概念,从物理学角度来看,导数是研究物体某一时刻的瞬时速度,比如你开车从家 8:00 出发到公司上班,9:00 到到达公司,这一个小时内的平均车速是 80km/h,而途中8:15:30这一时刻的速度,就被称为瞬时速度,此刻的速度可能是 100km/h,也可能是 20km/h。而从几何意义上来讲,你可以把它理解为该函数曲线在一点上的切线斜率。

导数有其严格的数学定义,它巧妙的利用了极限的思想,也就是无限趋近于 0 的思想。设函数 y=f(x) 在点 x0 的某个邻域内有定义,当自变量 x 在 x0 处有增量 Δx,(x0+Δx)也在该邻域内时,相应地函数取得增量 Δy=f(x0+Δx)-f(x0);如果 Δy 与 Δx 之比当 Δx→0 时极限存在,则称函数 y=f(x) 在点 x0 处可导,并称这个极限为函数 y=f(x) 在点 x0 处的导数记做 :

那么什么样的函数具有导数呢?是不是所有的函数都有导数?当然不是,而且函数也不一定在其所有点上都有导数。如果某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。可导的函数一定连续;不连续的函数一定不可导。

导数的发明者是伟大的科学家牛顿与布莱尼茨,它是微积分的一个重要的支柱。在机器学习中,我们只需会用前辈科学家们留下来的知识就行了,比如熟悉常见的导函数公式,以下列举了常用的导数公式:

偏导数

偏导数虽然和导数只有一字之差,但是却相差甚多,从它们的定义来看,偏导数是指对含有两个自变量的函数中的一个自变量求导,也就是说偏导数要求函数必须具备两个自变量。比如拿 z=f(x,y) 举例,如果只有自变量x变化,而自变量y固定(即看作常量),这时它就是x的一元函数,这函数对x的导数,称为二元函数z对于x的偏导数,记做 fx(x,y) 。

有如下函数 z = x2 + 3xy + y2,分别求 z 对于 x 、y 的偏导数。如下所示:

fx(x,y) = 2x + 3y # 关于 x 的偏导数

fy(x,y) = 3x + 2y # 关于 y 的偏导数

当求 x 的偏导时就要把 y 当做常数项来对待,而当求 y 的偏导时就要把 x 当做常数项对待。关于偏导数还会涉及到高阶偏,如果感兴趣的话可以点击了解一下。

梯度下降

梯度下降是机器学习中常用的一种优化方法,主要用来解决求极小值的问题,某个函数在某点的梯度指向该函数取得最大值的方向,那么它的反反向自然就是取得最小值的方向。在解决线性回归和 Logistic(逻辑) 回归问题时,梯度下降方法有着广泛的应用。

梯度是微积分学的术语,它本质上是一个向量,表示函数在某一点处的方向导数上沿着特定的方向取得最大值,即函数在该点处沿着该方向变化最快,变化率最大。梯度下降法的计算过程就是沿梯度方向求解极小值,当然你也可以沿梯度上升的方向求解极大值。

那么如何能够更好的理解“梯度下降”呢?如果不考虑其他外在因素,其实你可以把它想象成“下山”的场景,如何从一个高山上以最快的时间走到山脚下呢?其实很简单,以你所在的当前位置为基准,寻找该位置最陡峭的地方,然后沿着此方向向下走,并且每走一段距离,都要寻找当前位置“最陡峭的地方”,反复采用上述方法,最终就能以最快的时间抵达山脚下。

在这个下山的过程中,“寻找所处位置最陡峭的地方,并沿此位置向下走”最为关键,如果把这个做法对应到函数中,就是找到“给定点的梯度”而梯度的方向就是函数值变化最快的方向。

从上述描述中,你可能感觉到平淡无奇,其实每一个词语都蕴含着数学知识,比如“以当前所在位置为基准,找到最陡峭的地方”从数学角度来讲就是找到所在点的“切线”方向,也就是对这点“求导”,然后循着切线轨迹点反复使用此方法,就可以到达极小值点。

在“线性回归:损失函数和假设函数”一节中,我们讲解了线性回归的损失函数,而梯度下降作为一种优化方法,其目的是要使得损失值最小。因此“梯度下降”就需要控制损失函数的w和b参数来找到最小值。比如控制 w 就会得到如下方法:

w新=w旧 - 学习率 * 损失值

通过梯度下降计算极小值时,需要对损失函数的w求偏导求得,这个偏导也就是“梯度”,通过损失值来调节w,不断缩小损失值直到最小,这也正是梯度下降的得名来由。

“学习率”是一个由外部输入的参数,被称为“超参数”,可以形象地把它理解为下山时走的“步长”大小,想要 w 多调整一点,就把学习率调高一点。不过学习率也不是越高越好,过高的学习率可能导致调整幅度过大,导致无法求得真正的最小值。当损失函数取得极小值时,此时的参数值被称为“最优参数”。因此,在机器学习中最重要的一点就是寻找“最优参数”。

梯度下降是个大家族,它有很多成员,比如批量梯度下降(BGD)、随机梯度下降(SGD)、小批量梯度下降(MBGD),其中批量梯度下降是最常用的,相关内容后续会详细介绍。

sklearn应用线性回归算法

Scikit-learn 简称 sklearn 是基于 Python 语言实现的机器学习算法库,它包含了常用的机器学习算法,比如回归、分类、聚类、支持向量机、随机森林等等。同时,它使用 NumPy 库进行高效的科学计算,比如线性代数、矩阵等等。

Scikit-learn 是 GitHub 上最受欢迎的机器学习库之一,其最新版本是 2020 年12 月发布的 scikit-learn 0.24.1。

Scikit-learn 涵盖了常用的机器学习算法,而且还在不断的添加完善,对于本教程所涉及的机器学习算法它都做了良好的 API 封装,以供直接调用。你可以根据不同的模型进行针对性的选择。下面介绍 sklearn 中常用的算法库:

·linear_model:线性模型算法族库,包含了线性回归算法,以及 Logistic 回归算法,它们都是基于线性模型。

.naiv_bayes:朴素贝叶斯模型算法库。

.tree:决策树模型算法库。

.svm:支持向量机模型算法库。

.neural_network:神经网络模型算法库。

.neightbors:最近邻算法模型库。

实现线性回归算法

下面我们是基于 sklearn 实现线性回归算法,大概可以分为三步,首先从 sklearn 库中导入线性模型中的线性回归算法,如下所示:

from sklearn import linear_model

其次训练线性回归模型。使用 fit() 喂入训练数据,如下所示:

model = linear_model.LinearRegression()
model.fit(x, y)

最后一步就是对训练好的模型进行预测。调用 predict() 预测输出结果, “x_”为输入测试数据,如下所示:

model.predict(x_)

你可能会感觉 so easy,其实没错,使用 sklearn 算法库实现线性回归就是这么简单,不过上述代码只是一个基本的框架,要想真正的把这台“机器”跑起来,我们就得给它喂入数据,因此准备数据集是必不可少的环节。数据集的整理也是一门专业的知识,会涉及到数据的收集、清洗,也就是预处理的过程,比如均值移除、归一化等操作,如果熟悉 Pandas 的话应该了解, 因此这里不做重点讲解。

准备数据

下面我们手动生成一个数据集,如下所示:

# 使用numpy准备数据集
import numpy as np
# 准备自变量x,-3到3的区间均分间隔30份数
x = np.linspace(3,6.40)
#准备因变量y,这一个关于x的假设函数
y = 3 * x + 2
2) 实现算法
#使用matplotlib绘制图像,使用numpy准备数据集
import  matplotlib.pyplot as plt
import numpy as np
from sklearn import linear_model
#准备自变量x,生成数据集,3到6的区间均分间隔30份数
x = np.linspace(3,6.40)
#准备因变量y,这一个关于x的假设函数
y = 3 * x + 2
#由于fit 需要传入二维矩阵数据,因此需要处理x,y的数据格式,将每个样本信息单独作为矩阵的一行
x=[[i] for i in x]
y=[[i] for i in y]
# 构建线性回归模型
model=linear_model.LinearRegression()
# 训练模型,"喂入"数据
model.fit(x,y)
# 准备测试数据 x_,这里准备了三组,如下:
x_=[[4],[5],[6]]
# 打印预测结果
y_=model.predict(x_)
print(y_)
#查看w和b的
print("w值为:",model.coef_)
print("b截距值为:",model.intercept_)
#数据集绘制,散点图,图像满足函假设函数图像
plt.scatter(x,y)
plt.show()

通过线性回归得到的线性函数图像,如下所示:

打印输出结果如下所示:

测试集输出结果:

[[14.]

[17.]

[20.]]

w值为: [[3.]]

b截距值为: [2.]

通过上述代码我们就实现“线性回归”的过程,但是在实际情况中,我们要面临的数据集要复杂的多,绝大多数情况不会这样理想,都会存在一些波动。在生成数据集的代码段内添加以下代码,如下所示:

#准备自变量x,生成数据集,3到6的区间均分间隔30份数
x = np.linspace(3,6.40)
#准备因变量y,这一个关于x的假设函数
y = 3 * x + 2
# 添加代码,扰乱点的分布
x = x + np.random.rand(40)

利用 NumPy 的 random. rand() 随机生成 0 - 1 之前的波动数值,从而改变数据点的分布情况,如下所示:

虽然做标签散乱分布,但是使用线性回归算法学习依然可以得到线性函数,此时 w 与 b 的输出结果如下所示:

w值为: [[2.68673744]]

b截距值为: [0.80154335]

绘制最佳拟合直线,程序代码如下:

#使用matplotlib绘制图像,使用numpy准备数据集
import  matplotlib.pyplot as plt
import numpy as np
from sklearn import linear_model
#准备自变量x,生成数据集,-3到3的区间均分间隔30份数
x = np.linspace(3,6,40)
#准备因变量y,这一个关于x的假设函数
y=3 * x + 2
x = x + np.random.rand(40)
#准备因变量y,这一个关于x的假设函数
#由于fit 需要传入二维矩阵数据,因此需要处理x,y数据格式,将每个样本信息单独作为矩阵的一行
x=[[i] for i in x]
y=[[i] for i in y]
model=linear_model.LinearRegression()
model.fit(x,y)
#准备测试数据 x_,这里准备了三组,如下:
x_=[[4],[5],[6]]
# 打印预测结果
y_=model.predict(x_)
print(y_)
#查看w和b的
print("w值为:",model.coef_)
print("b截距值为:",model.intercept_)
#数据集绘制,散点图,图像满足函假设函数图像
plt.scatter(x,y)
#绘制最佳拟合直线
plt.plot(x_,y_,color="red",linewidth=3.0,linestyle="-")
plt.legend(["func","Data"],loc=0)
plt.show()

函数图像如下所示:

线性回归步骤

通过上述代码了解了如何使用 Python sklearn 实现线性回归,下面从总整体出发再次审视该算法:掌握线性回归算法的具体步骤。

线性回归适用于有监督学习的回归问题,首先在构建线性模型前,需要准备好待输入的数据集,数据集按照需要可划分为训练集和测试集,使用训练集中的向量 X 与向量 Y 进行模型的训练,其中向量 Y 表示对应 X 的结果数值(也就是“参考答案”);而输出时需要使用测试集,输入测试 X 向量输出预测结果向量 Y。

其实线性回归主要解决了以下三个问题:

第一,为假设函数设定了参数 w,通过假设函数画出线性“拟合”直线。

第二,将预测值带入损失函数,计算出一个损失值。

第三,通过得到的损失值,利用梯度下降等优化方法,不断调整 w 参数,使得损失值取得最小值。我们把这个优化参数值的过程叫做“线性回归”的学习过程。

线性回归算法简单,且容易理解,但这并不影响它的广泛应用,比如经济金融领域实现股票的预测,以及著名的波士顿房价预测,这些都是线性回归的典型应有,因此我们要走出一个误区,不要感觉算法简单就不重要,机器学习虽然算法众多,但每一种算法都有其存在的理由,而掌握了线性回归就相当于拿到了算法世界的入场券。

💕Final~

以上就是这篇文章的全部内容了,希望本文《Python机器学习算法入门教程(三)》的内容对大家的学习或者工作具有一定的参考学习价值,bye~

相关文章
|
10天前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
139 55
|
28天前
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
95 4
|
26天前
|
搜索推荐 Python
利用Python内置函数实现的冒泡排序算法
在上述代码中,`bubble_sort` 函数接受一个列表 `arr` 作为输入。通过两层循环,外层循环控制排序的轮数,内层循环用于比较相邻的元素并进行交换。如果前一个元素大于后一个元素,就将它们交换位置。
126 67
|
26天前
|
存储 搜索推荐 Python
用 Python 实现快速排序算法。
快速排序的平均时间复杂度为$O(nlogn)$,空间复杂度为$O(logn)$。它在大多数情况下表现良好,但在某些特殊情况下可能会退化为最坏情况,时间复杂度为$O(n^2)$。你可以根据实际需求对代码进行调整和修改,或者尝试使用其他优化策略来提高快速排序的性能
117 61
|
20天前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
109 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
2天前
|
存储 运维 监控
探索局域网电脑监控软件:Python算法与数据结构的巧妙结合
在数字化时代,局域网电脑监控软件成为企业管理和IT运维的重要工具,确保数据安全和网络稳定。本文探讨其背后的关键技术——Python中的算法与数据结构,如字典用于高效存储设备信息,以及数据收集、异常检测和聚合算法提升监控效率。通过Python代码示例,展示了如何实现基本监控功能,帮助读者理解其工作原理并激发技术兴趣。
41 20
|
7天前
|
算法
PAI下面的gbdt、xgboost、ps-smart 算法如何优化?
设置gbdt 、xgboost等算法的样本和特征的采样率
22 2
|
26天前
|
存储 算法 搜索推荐
Python 中数据结构和算法的关系
数据结构是算法的载体,算法是对数据结构的操作和运用。它们共同构成了计算机程序的核心,对于提高程序的质量和性能具有至关重要的作用
|
26天前
|
数据采集 存储 算法
Python 中的数据结构和算法优化策略
Python中的数据结构和算法如何进行优化?
|
25天前
|
机器学习/深度学习 算法 数据挖掘
C语言在机器学习中的应用及其重要性。C语言以其高效性、灵活性和可移植性,适合开发高性能的机器学习算法,尤其在底层算法实现、嵌入式系统和高性能计算中表现突出
本文探讨了C语言在机器学习中的应用及其重要性。C语言以其高效性、灵活性和可移植性,适合开发高性能的机器学习算法,尤其在底层算法实现、嵌入式系统和高性能计算中表现突出。文章还介绍了C语言在知名机器学习库中的作用,以及与Python等语言结合使用的案例,展望了其未来发展的挑战与机遇。
40 1