Python机器学习算法入门教程(三)

简介: 本节讲解如何构建线性回归算法中的“线性模型”,所谓“线性”其实就是一条“直线”。因此,本节开篇首先普及一下初中的数学知识“一次函数”。

构建线性回归模型

本节讲解如何构建线性回归算法中的“线性模型”,所谓“线性”其实就是一条“直线”。因此,本节开篇首先普及一下初中的数学知识“一次函数”。

一次函数

一次函数就是最简单的“线性模型”,其直线方程表达式为y = kx + b,其中 k 表示斜率,b 表示截距,x 为自变量,y 表示因变量。下面展示了 y = 2x + 3 的函数图像:

函数中斜率 k 与 截距 b 控制着“直线”的“旋转”与“平移”。如果斜率 k 逐渐减小,则“直线”会向着“顺时针”方向旋转,为 k= 0 的时候与 x 轴平行。截距 b 控制“直接”的上下平移,b 为正数则向上平移,b 为负数则表示向下平移。

在机器学习中斜率 k 通常用 w 表示,也就是权重系数,因此“线性方程”通过控制 w 与 b 来实现“直线”与数据点最大程度的“拟合”。如下图(黑色 x 号代表数据样本)所示:

线性拟合

线性方程不能完全等同于“直线方程”,因为前者可以描述多维空间内直接,而后者只能描述二维平面内的 x 与 y 的关系。

构建线性模型

在线性回归问题中数据样本会呈现“线性”分布的态势,因此我们使用“线性方程”来最大程度的“拟合数据”。线性方程预测的结果具有连续性,下面通过示例简单说明:小亮今年 8 岁,去年 7 岁,前年 6 岁,那么他明年几岁呢?估计你闭着眼都能想到答案,但是我们要从机器学习的角度去看待这个问题。

首先年龄、时间是一组连续性的数据,也就是因变量随着自变量规律性地连续增长,显然它是一个“回归问题”。下面把上述数据以二维数组的形式表示出来,构建一个数据集,如下所示:

[[2021,8],

[2020,7],

[2019,6]]

我们知道两个点就可以确定一条“直线”,因此将两组数据带入 y = kx + b,最终求得“线程方程”:

y = x - 2013

上述函数就是所谓的“假设函数”,通过它即可实现对结果的预测。这个函数的图像如下所示:

假设函数图像

从上述函数图像可以看出,直线对数据样本恰好“拟合”。这是最标准的拟合直线,通过它就可以“预测”出小亮明年的年龄了。上述示例就构建了一个简单的的“线性模型”。读到这里你会惊叹“怎么如此简单”,其实线性模型就是这么简单。对于机器学习而言,最关键的就是“学习”,在大量的数据中,通过不断优化参数,找到一条最佳的拟合“直线”,最终预测出一个理想的结果。

提示:上述示例是一个理想化的“线性模型”,在实际应用中要复杂的多,不过“万变不离其宗”

机器学习是一门数学、统计学、计算机科学的结合技术,因此它有着独特的知识体系,比如会将数据集分为“训练集”与“测试集”,而且还会通过“损失函数”来不断优化预测结果,关于这些知识会在后需内容详细介绍。

梯度下降求极值

上面我们从数学的角度解释了假设函数和损失函数,我们最终的目的要得到一个最佳的“拟合”直线,因此就需要将损失函数的偏差值减到最小,我们把寻找极小值的过程称为“优化方法”,常用的优化方法有很多,比如共轭梯度法、梯度下降法、牛顿法和拟牛顿法。你可能对于上述方法感到陌生,甚至于害怕,其实大可不必,它们只不过应用了一些数学公式而已。

本节我们重点学习梯度下降法(Gradient Descent),在认识该方法之前,我们先复习一下高中时的数学知识。

导数

导数也叫导函数,或者微商,它是微积分中的重要基础概念,从物理学角度来看,导数是研究物体某一时刻的瞬时速度,比如你开车从家 8:00 出发到公司上班,9:00 到到达公司,这一个小时内的平均车速是 80km/h,而途中8:15:30这一时刻的速度,就被称为瞬时速度,此刻的速度可能是 100km/h,也可能是 20km/h。而从几何意义上来讲,你可以把它理解为该函数曲线在一点上的切线斜率。

导数有其严格的数学定义,它巧妙的利用了极限的思想,也就是无限趋近于 0 的思想。设函数 y=f(x) 在点 x0 的某个邻域内有定义,当自变量 x 在 x0 处有增量 Δx,(x0+Δx)也在该邻域内时,相应地函数取得增量 Δy=f(x0+Δx)-f(x0);如果 Δy 与 Δx 之比当 Δx→0 时极限存在,则称函数 y=f(x) 在点 x0 处可导,并称这个极限为函数 y=f(x) 在点 x0 处的导数记做 :

那么什么样的函数具有导数呢?是不是所有的函数都有导数?当然不是,而且函数也不一定在其所有点上都有导数。如果某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。可导的函数一定连续;不连续的函数一定不可导。

导数的发明者是伟大的科学家牛顿与布莱尼茨,它是微积分的一个重要的支柱。在机器学习中,我们只需会用前辈科学家们留下来的知识就行了,比如熟悉常见的导函数公式,以下列举了常用的导数公式:

偏导数

偏导数虽然和导数只有一字之差,但是却相差甚多,从它们的定义来看,偏导数是指对含有两个自变量的函数中的一个自变量求导,也就是说偏导数要求函数必须具备两个自变量。比如拿 z=f(x,y) 举例,如果只有自变量x变化,而自变量y固定(即看作常量),这时它就是x的一元函数,这函数对x的导数,称为二元函数z对于x的偏导数,记做 fx(x,y) 。

有如下函数 z = x2 + 3xy + y2,分别求 z 对于 x 、y 的偏导数。如下所示:

fx(x,y) = 2x + 3y # 关于 x 的偏导数

fy(x,y) = 3x + 2y # 关于 y 的偏导数

当求 x 的偏导时就要把 y 当做常数项来对待,而当求 y 的偏导时就要把 x 当做常数项对待。关于偏导数还会涉及到高阶偏,如果感兴趣的话可以点击了解一下。

梯度下降

梯度下降是机器学习中常用的一种优化方法,主要用来解决求极小值的问题,某个函数在某点的梯度指向该函数取得最大值的方向,那么它的反反向自然就是取得最小值的方向。在解决线性回归和 Logistic(逻辑) 回归问题时,梯度下降方法有着广泛的应用。

梯度是微积分学的术语,它本质上是一个向量,表示函数在某一点处的方向导数上沿着特定的方向取得最大值,即函数在该点处沿着该方向变化最快,变化率最大。梯度下降法的计算过程就是沿梯度方向求解极小值,当然你也可以沿梯度上升的方向求解极大值。

那么如何能够更好的理解“梯度下降”呢?如果不考虑其他外在因素,其实你可以把它想象成“下山”的场景,如何从一个高山上以最快的时间走到山脚下呢?其实很简单,以你所在的当前位置为基准,寻找该位置最陡峭的地方,然后沿着此方向向下走,并且每走一段距离,都要寻找当前位置“最陡峭的地方”,反复采用上述方法,最终就能以最快的时间抵达山脚下。

在这个下山的过程中,“寻找所处位置最陡峭的地方,并沿此位置向下走”最为关键,如果把这个做法对应到函数中,就是找到“给定点的梯度”而梯度的方向就是函数值变化最快的方向。

从上述描述中,你可能感觉到平淡无奇,其实每一个词语都蕴含着数学知识,比如“以当前所在位置为基准,找到最陡峭的地方”从数学角度来讲就是找到所在点的“切线”方向,也就是对这点“求导”,然后循着切线轨迹点反复使用此方法,就可以到达极小值点。

在“线性回归:损失函数和假设函数”一节中,我们讲解了线性回归的损失函数,而梯度下降作为一种优化方法,其目的是要使得损失值最小。因此“梯度下降”就需要控制损失函数的w和b参数来找到最小值。比如控制 w 就会得到如下方法:

w新=w旧 - 学习率 * 损失值

通过梯度下降计算极小值时,需要对损失函数的w求偏导求得,这个偏导也就是“梯度”,通过损失值来调节w,不断缩小损失值直到最小,这也正是梯度下降的得名来由。

“学习率”是一个由外部输入的参数,被称为“超参数”,可以形象地把它理解为下山时走的“步长”大小,想要 w 多调整一点,就把学习率调高一点。不过学习率也不是越高越好,过高的学习率可能导致调整幅度过大,导致无法求得真正的最小值。当损失函数取得极小值时,此时的参数值被称为“最优参数”。因此,在机器学习中最重要的一点就是寻找“最优参数”。

梯度下降是个大家族,它有很多成员,比如批量梯度下降(BGD)、随机梯度下降(SGD)、小批量梯度下降(MBGD),其中批量梯度下降是最常用的,相关内容后续会详细介绍。

sklearn应用线性回归算法

Scikit-learn 简称 sklearn 是基于 Python 语言实现的机器学习算法库,它包含了常用的机器学习算法,比如回归、分类、聚类、支持向量机、随机森林等等。同时,它使用 NumPy 库进行高效的科学计算,比如线性代数、矩阵等等。

Scikit-learn 是 GitHub 上最受欢迎的机器学习库之一,其最新版本是 2020 年12 月发布的 scikit-learn 0.24.1。

Scikit-learn 涵盖了常用的机器学习算法,而且还在不断的添加完善,对于本教程所涉及的机器学习算法它都做了良好的 API 封装,以供直接调用。你可以根据不同的模型进行针对性的选择。下面介绍 sklearn 中常用的算法库:

·linear_model:线性模型算法族库,包含了线性回归算法,以及 Logistic 回归算法,它们都是基于线性模型。

.naiv_bayes:朴素贝叶斯模型算法库。

.tree:决策树模型算法库。

.svm:支持向量机模型算法库。

.neural_network:神经网络模型算法库。

.neightbors:最近邻算法模型库。

实现线性回归算法

下面我们是基于 sklearn 实现线性回归算法,大概可以分为三步,首先从 sklearn 库中导入线性模型中的线性回归算法,如下所示:

from sklearn import linear_model

其次训练线性回归模型。使用 fit() 喂入训练数据,如下所示:

model = linear_model.LinearRegression()
model.fit(x, y)

最后一步就是对训练好的模型进行预测。调用 predict() 预测输出结果, “x_”为输入测试数据,如下所示:

model.predict(x_)

你可能会感觉 so easy,其实没错,使用 sklearn 算法库实现线性回归就是这么简单,不过上述代码只是一个基本的框架,要想真正的把这台“机器”跑起来,我们就得给它喂入数据,因此准备数据集是必不可少的环节。数据集的整理也是一门专业的知识,会涉及到数据的收集、清洗,也就是预处理的过程,比如均值移除、归一化等操作,如果熟悉 Pandas 的话应该了解, 因此这里不做重点讲解。

准备数据

下面我们手动生成一个数据集,如下所示:

# 使用numpy准备数据集
import numpy as np
# 准备自变量x,-3到3的区间均分间隔30份数
x = np.linspace(3,6.40)
#准备因变量y,这一个关于x的假设函数
y = 3 * x + 2
2) 实现算法
#使用matplotlib绘制图像,使用numpy准备数据集
import  matplotlib.pyplot as plt
import numpy as np
from sklearn import linear_model
#准备自变量x,生成数据集,3到6的区间均分间隔30份数
x = np.linspace(3,6.40)
#准备因变量y,这一个关于x的假设函数
y = 3 * x + 2
#由于fit 需要传入二维矩阵数据,因此需要处理x,y的数据格式,将每个样本信息单独作为矩阵的一行
x=[[i] for i in x]
y=[[i] for i in y]
# 构建线性回归模型
model=linear_model.LinearRegression()
# 训练模型,"喂入"数据
model.fit(x,y)
# 准备测试数据 x_,这里准备了三组,如下:
x_=[[4],[5],[6]]
# 打印预测结果
y_=model.predict(x_)
print(y_)
#查看w和b的
print("w值为:",model.coef_)
print("b截距值为:",model.intercept_)
#数据集绘制,散点图,图像满足函假设函数图像
plt.scatter(x,y)
plt.show()

通过线性回归得到的线性函数图像,如下所示:

打印输出结果如下所示:

测试集输出结果:

[[14.]

[17.]

[20.]]

w值为: [[3.]]

b截距值为: [2.]

通过上述代码我们就实现“线性回归”的过程,但是在实际情况中,我们要面临的数据集要复杂的多,绝大多数情况不会这样理想,都会存在一些波动。在生成数据集的代码段内添加以下代码,如下所示:

#准备自变量x,生成数据集,3到6的区间均分间隔30份数
x = np.linspace(3,6.40)
#准备因变量y,这一个关于x的假设函数
y = 3 * x + 2
# 添加代码,扰乱点的分布
x = x + np.random.rand(40)

利用 NumPy 的 random. rand() 随机生成 0 - 1 之前的波动数值,从而改变数据点的分布情况,如下所示:

虽然做标签散乱分布,但是使用线性回归算法学习依然可以得到线性函数,此时 w 与 b 的输出结果如下所示:

w值为: [[2.68673744]]

b截距值为: [0.80154335]

绘制最佳拟合直线,程序代码如下:

#使用matplotlib绘制图像,使用numpy准备数据集
import  matplotlib.pyplot as plt
import numpy as np
from sklearn import linear_model
#准备自变量x,生成数据集,-3到3的区间均分间隔30份数
x = np.linspace(3,6,40)
#准备因变量y,这一个关于x的假设函数
y=3 * x + 2
x = x + np.random.rand(40)
#准备因变量y,这一个关于x的假设函数
#由于fit 需要传入二维矩阵数据,因此需要处理x,y数据格式,将每个样本信息单独作为矩阵的一行
x=[[i] for i in x]
y=[[i] for i in y]
model=linear_model.LinearRegression()
model.fit(x,y)
#准备测试数据 x_,这里准备了三组,如下:
x_=[[4],[5],[6]]
# 打印预测结果
y_=model.predict(x_)
print(y_)
#查看w和b的
print("w值为:",model.coef_)
print("b截距值为:",model.intercept_)
#数据集绘制,散点图,图像满足函假设函数图像
plt.scatter(x,y)
#绘制最佳拟合直线
plt.plot(x_,y_,color="red",linewidth=3.0,linestyle="-")
plt.legend(["func","Data"],loc=0)
plt.show()

函数图像如下所示:

线性回归步骤

通过上述代码了解了如何使用 Python sklearn 实现线性回归,下面从总整体出发再次审视该算法:掌握线性回归算法的具体步骤。

线性回归适用于有监督学习的回归问题,首先在构建线性模型前,需要准备好待输入的数据集,数据集按照需要可划分为训练集和测试集,使用训练集中的向量 X 与向量 Y 进行模型的训练,其中向量 Y 表示对应 X 的结果数值(也就是“参考答案”);而输出时需要使用测试集,输入测试 X 向量输出预测结果向量 Y。

其实线性回归主要解决了以下三个问题:

第一,为假设函数设定了参数 w,通过假设函数画出线性“拟合”直线。

第二,将预测值带入损失函数,计算出一个损失值。

第三,通过得到的损失值,利用梯度下降等优化方法,不断调整 w 参数,使得损失值取得最小值。我们把这个优化参数值的过程叫做“线性回归”的学习过程。

线性回归算法简单,且容易理解,但这并不影响它的广泛应用,比如经济金融领域实现股票的预测,以及著名的波士顿房价预测,这些都是线性回归的典型应有,因此我们要走出一个误区,不要感觉算法简单就不重要,机器学习虽然算法众多,但每一种算法都有其存在的理由,而掌握了线性回归就相当于拿到了算法世界的入场券。

💕Final~

以上就是这篇文章的全部内容了,希望本文《Python机器学习算法入门教程(三)》的内容对大家的学习或者工作具有一定的参考学习价值,bye~

相关文章
|
10天前
|
机器学习/深度学习 存储 算法
解锁文件共享软件背后基于 Python 的二叉搜索树算法密码
文件共享软件在数字化时代扮演着连接全球用户、促进知识与数据交流的重要角色。二叉搜索树作为一种高效的数据结构,通过有序存储和快速检索文件,极大提升了文件共享平台的性能。它依据文件名或时间戳等关键属性排序,支持高效插入、删除和查找操作,显著优化用户体验。本文还展示了用Python实现的简单二叉搜索树代码,帮助理解其工作原理,并展望了该算法在分布式计算和机器学习领域的未来应用前景。
|
26天前
|
监控 算法 安全
深度洞察内网监控电脑:基于Python的流量分析算法
在当今数字化环境中,内网监控电脑作为“守城卫士”,通过流量分析算法确保内网安全、稳定运行。基于Python的流量分析算法,利用`scapy`等工具捕获和解析数据包,提取关键信息,区分正常与异常流量。结合机器学习和可视化技术,进一步提升内网监控的精准性和效率,助力企业防范潜在威胁,保障业务顺畅。本文深入探讨了Python在内网监控中的应用,展示了其实战代码及未来发展方向。
|
1月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
眼疾识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了4种常见的眼疾图像数据集(白内障、糖尿病性视网膜病变、青光眼和正常眼睛) 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张眼疾图片识别其名称。
131 5
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
|
2月前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
353 55
|
2月前
|
存储 缓存 监控
局域网屏幕监控系统中的Python数据结构与算法实现
局域网屏幕监控系统用于实时捕获和监控局域网内多台设备的屏幕内容。本文介绍了一种基于Python双端队列(Deque)实现的滑动窗口数据缓存机制,以处理连续的屏幕帧数据流。通过固定长度的窗口,高效增删数据,确保低延迟显示和存储。该算法适用于数据压缩、异常检测等场景,保证系统在高负载下稳定运行。 本文转载自:https://www.vipshare.com
132 66
|
6天前
|
监控 算法 安全
内网桌面监控软件深度解析:基于 Python 实现的 K-Means 算法研究
内网桌面监控软件通过实时监测员工操作,保障企业信息安全并提升效率。本文深入探讨K-Means聚类算法在该软件中的应用,解析其原理与实现。K-Means通过迭代更新簇中心,将数据划分为K个簇类,适用于行为分析、异常检测、资源优化及安全威胁识别等场景。文中提供了Python代码示例,展示如何实现K-Means算法,并模拟内网监控数据进行聚类分析。
28 10
|
24天前
|
存储 算法 安全
控制局域网上网软件之 Python 字典树算法解析
控制局域网上网软件在现代网络管理中至关重要,用于控制设备的上网行为和访问权限。本文聚焦于字典树(Trie Tree)算法的应用,详细阐述其原理、优势及实现。通过字典树,软件能高效进行关键词匹配和过滤,提升系统性能。文中还提供了Python代码示例,展示了字典树在网址过滤和关键词屏蔽中的具体应用,为局域网的安全和管理提供有力支持。
50 17
|
1月前
|
机器学习/深度学习 人工智能 算法
机器学习算法的优化与改进:提升模型性能的策略与方法
机器学习算法的优化与改进:提升模型性能的策略与方法
273 13
机器学习算法的优化与改进:提升模型性能的策略与方法
|
1月前
|
存储 监控 算法
员工电脑监控屏幕场景下 Python 哈希表算法的探索
在数字化办公时代,员工电脑监控屏幕是保障信息安全和提升效率的重要手段。本文探讨哈希表算法在该场景中的应用,通过Python代码例程展示如何使用哈希表存储和查询员工操作记录,并结合数据库实现数据持久化,助力企业打造高效、安全的办公环境。哈希表在快速检索员工信息、优化系统性能方面发挥关键作用,为企业管理提供有力支持。
45 20
|
28天前
|
存储 人工智能 算法
深度解密:员工飞单需要什么证据之Python算法洞察
员工飞单是企业运营中的隐性风险,严重侵蚀公司利润。为应对这一问题,精准搜集证据至关重要。本文探讨如何利用Python编程语言及其数据结构和算法,高效取证。通过创建Transaction类存储交易数据,使用列表管理订单信息,结合排序算法和正则表达式分析交易时间和聊天记录,帮助企业识别潜在的飞单行为。Python的强大功能使得从交易流水和沟通记录中提取关键证据变得更加系统化和高效,为企业维权提供有力支持。

热门文章

最新文章