flink学习(小麦)

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
日志服务 SLS,月写入数据量 50GB 1个月
简介: flink学习

安装Flink

https://flink.apache.org/downloads.html

下载安装包,这里下载的是 flink-1.10.1-bin-scala_2.11.tgz

安装参考 https://ci.apache.org/projects/flink/flink-docs-release-1.10/getting-started/tutorials/local_setup.html

./bin/start-cluster.sh  # Start Flink 

访问 http://localhost:8081

运行 WordCount 示例

商品实时推荐

基于Flink实现的商品实时推荐系统。flink统计商品热度,放入redis缓存,分析日志信息,将画像标签和实时记录放入Hbase。在用户发起推荐请求后,根据用户画像重排序热度榜,并结合协同过滤和标签两个推荐模块为新生成的榜单的每一个产品添加关联产品,最后返回新的用户列表。

系统架构

在日志数据模块(flink-2-hbase)中,又主要分为6个Flink任务:

  • 用户-产品浏览历史 -> 实现基于协同过滤的推荐逻辑

    通过Flink去记录用户浏览过这个类目下的哪些产品,为后面的基于Item的协同过滤做准备 实时的记录用户的评分到Hbase中,为后续离线处理做准备。数据存储在Hbase的p_history表

  • 用户-兴趣 -> 实现基于上下文的推荐逻辑

    根据用户对同一个产品的操作计算兴趣度,计算规则通过操作间隔时间(如购物 - 浏览 < 100s)则判定为一次兴趣事件 通过Flink的ValueState实现,如果用户的操作Action=3(收藏),则清除这个产品的state,如果超过100s没有出现Action=3的事件,也会清除这个state。数据存储在Hbase的u_interest表

  • 用户画像计算 -> 实现基于标签的推荐逻辑

    v1.0按照三个维度去计算用户画像,分别是用户的颜色兴趣,用户的产地兴趣,和用户的风格兴趣.根据日志不断的修改用户画像的数据,记录在Hbase中。数据存储在Hbase的user表

  • 产品画像记录 -> 实现基于标签的推荐逻辑

    用两个维度记录产品画像,一个是喜爱该产品的年龄段,另一个是性别。数据存储在Hbase的prod表

  • 事实热度榜 -> 实现基于热度的推荐逻辑

    通过Flink时间窗口机制,统计当前时间的实时热度,并将数据缓存在Redis中。通过Flink的窗口机制计算实时热度,使用ListState保存一次热度榜。数据存储在redis中,按照时间戳存储list

  • 日志导入

    从Kafka接收的数据直接导入进Hbase事实表,保存完整的日志log,日志中包含了用户Id,用户操作的产品id,操作时间,行为(如购买,点击,推荐等)。数据按时间窗口统计数据大屏需要的数据,返回前段展示。数据存储在Hbase的con表

推荐引擎逻辑

基于热度的推荐逻辑

​根据用户特征,重新排序热度榜,之后根据两种推荐算法计算得到的产品相关度评分,为每个热度榜中的产品推荐几个关联的产品。

基于产品画像的产品相似度计算方法

基于产品画像的推荐逻辑依赖于产品画像和热度榜两个维度,产品画像有三个特征,包含color/country/style三个角度,通过计算用户对该类目产品的评分来过滤热度榜上的产品。

在已经有产品画像的基础上,计算item与item之间的关联系,通过余弦相似度来计算两两之间的评分,最后在已有物品选中的情况下推荐关联性更高的产品。

相似度 A B C
A 1 0.7 0.2
B 0.7 1 0.6
C 0.2 0.6 1

基于协同过滤的产品相似度计算方法

根据产品用户表(Hbase) 去计算公式得到相似度评分:

前台推荐页面

当前推荐结果分为3列,分别是热度榜推荐,协同过滤推荐和产品画像推荐:

实时计算TopN热榜

本案例将实现一个“实时热门商品”的需求,我们可以将“实时热门商品”翻译成程序员更好理解的需求:每隔5分钟输出最近一小时内点击量最多的前 N 个商品。将这个需求进行分解我们大概要做这么几件事情:

  • 抽取出业务时间戳,告诉 Flink 框架基于业务时间做窗口
  • 过滤出点击行为数据
  • 按一小时的窗口大小,每5分钟统计一次,做滑动窗口聚合(Sliding Window)
  • 按每个窗口聚合,输出每个窗口中点击量前N名的商品
相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
相关文章
|
6月前
|
SQL 运维 API
Apache Flink 学习教程----持续更新
Apache Flink 学习教程----持续更新
291 0
|
SQL Serverless 程序员
准备数据集用于flink学习
准备一百多万的交易数据,作为flink学习过程中的数据集
115 1
准备数据集用于flink学习
|
流计算
从Flink 重启策略机制能学习到什么?
最近在学习Flink ,在看到Flink的重启策略机制时感觉这个设计很好。
112 0
|
存储 运维 供应链
为什么要学习 Apache Flink| 学习笔记
快速学习为什么要学习 Apache Flink。
为什么要学习 Apache Flink| 学习笔记
|
资源调度 分布式计算 Hadoop
基于mac构建大数据伪分布式学习环境(十一)-部署Flink1.14.5
本文主要讲解实时计算引擎Flink的部署,并使用word count实例来验证部署结果
159 0
|
SQL 消息中间件 缓存
大数据开发笔记(九):Flink综合学习)(二)
Flink 是一个框架和分布式处理引擎,用于对无界和有界数据流进行有状态计算。并且 Flink 提供了数据分布、容错机制以及资源管理等核心功能。Flink提供了诸多高抽象层的API以便用户编写分布式任务
279 0
大数据开发笔记(九):Flink综合学习)(二)
|
SQL 机器学习/深度学习 存储
大数据开发笔记(九):Flink综合学习)(一)
Flink 是一个框架和分布式处理引擎,用于对无界和有界数据流进行有状态计算。并且 Flink 提供了数据分布、容错机制以及资源管理等核心功能。Flink提供了诸多高抽象层的API以便用户编写分布式任务
204 0
大数据开发笔记(九):Flink综合学习)(一)
|
存储 消息中间件 缓存
学习flink的state
Apache Flink® — Stateful Computations over Data Streams,数据流上的状态计算。可以看出flink默认它是一个默认就有状态的分析引擎,State一般指一个具体的 Task/Operator 的状态,State数据默认保存在 Java 的堆内存中。 假设一个 Task 在处理过程中挂掉了,那么它在内存中的状态都会丢失,所有的数据都需要重新计算。从容错和消息处理的语义(At -least-once 和 Exactly-once)上来说,Flink引入了State 和 CheckPoint。
397 2
学习flink的state
|
数据安全/隐私保护 流计算
|
2月前
|
运维 数据处理 数据安全/隐私保护
阿里云实时计算Flink版测评报告
该测评报告详细介绍了阿里云实时计算Flink版在用户行为分析与标签画像中的应用实践,展示了其毫秒级的数据处理能力和高效的开发流程。报告还全面评测了该服务在稳定性、性能、开发运维及安全性方面的卓越表现,并对比自建Flink集群的优势。最后,报告评估了其成本效益,强调了其灵活扩展性和高投资回报率,适合各类实时数据处理需求。
下一篇
无影云桌面