python中读取txt文件时split()函数的妙用

简介: python中读取txt文件时split()函数的妙用

不知道大家有没有过需要从txt文件中读取含有多行多列的数据的经历,当我们读入数据时,数据会以string的形式被读入,然而如何进行数据类型转换就成了大的问题。

这里介绍一种最简单的方式和容易产生的错误使用方法。
txt测试文件中的数据如下

image.png
我们使用如下代码读取文件,使用readlines()一次性将所有数据全部读取。


with open(r"C:\Users\15025\Desktop\debug1.txt", "r") as f:
    all_data = f.readlines()
    print(all_data)
# ['6.317438621610765E-05  6.123920173773844E-05  0.00010382572761752979\n', '0.00010819194873178063  8.848784016828921E-05  0.0002043378699454479\n', '9.79660835582763E-05  9.750829986943346E-05  0.00021506758227284687']

我们不难发现这时我们的所有数据都被读入了同一行,但是内部有三个单引号括起来的部分,与我们测试数据中的三行吻合。

我们也可以看到,我们需要将这些数据分成单独的string,然后我们就可以使用例如float关键字对这些数据进行类型转换。

我们看到数据之间是通过空格来分开的。我们第一时间想到我们应该使用.split(" ")方法以空格将数据分开。

我们尝试以下代码

with open(r"C:\Users\15025\Desktop\debug1.txt", "r") as f:
    all_data = f.readlines()
    all_data = all_data[0].split(" ")
    print(all_data)
# ['6.317438621610765E-05', '', '6.123920173773844E-05', '', '0.00010382572761752979\n']

首先我们需要选取第一行,使用all_data[0],然后再使用split(" ")函数分开它们。

我们成功达到了目的,但是我们同时引入了""空字符串项和末尾处\n的隐患,很是棘手。

这么做我们就进入了误区。

正确地做法如下

with open(r"C:\Users\15025\Desktop\debug1.txt", "r") as f:
    all_data = f.readlines()
    all_data = all_data[0].split()
    print(all_data)
# ['6.317438621610765E-05', '6.123920173773844E-05', '0.00010382572761752979']

我们使用split()函数时不添加任何参数,这样就一次性去掉了""空字符串项和末尾处\n的隐患还同时分开了各个字符串。

如果需要输出多行的结果,我们可以预先定义一个数组,用来存放我们的数据,完整代码如下:(以后所有的多行多列数据均可以如此读入)
方法一:将数据以二维列表形式读入

array2d = []
with open(r"C:\Users\15025\Desktop\debug1.txt", "r") as f:
    all_data = f.readlines()
    for i in range(len(all_data)):
        temp_list = []
        for element in all_data[i].split():
            temp_list.append(float(element))
        array2d.append(temp_list)

print(array2d)
#[[6.31743862e-05, 6.12392017e-05, 0.000103825728], 
# [0.000108191949, 8.84878402e-05, 0.00020433787], 
# [9.79660836e-05, 9.75082999e-05, 0.000215067582]]

方法二:将数据以二维数组形式读入

import numpy as np

array = np.zeros((3, 3))
with open(r"C:\Users\15025\Desktop\debug1.txt", "r") as f:
    all_data = f.readlines()
    for i, line in enumerate(all_data):
        numbers = line.split()
        for j, element in enumerate(numbers):
            array[i, j] = float(element)

print(array)
# [[6.31743862e-05 6.12392017e-05 1.03825728e-04]
#  [1.08191949e-04 8.84878402e-05 2.04337870e-04]
#  [9.79660836e-05 9.75082999e-05 2.15067582e-04]]
相关文章
|
27天前
|
Python
Python之函数详解
【10月更文挑战第12天】
Python之函数详解
|
28天前
|
存储 数据安全/隐私保护 索引
|
11天前
|
开发者 Python
Python中__init__.py文件的作用
`__init__.py`文件在Python包管理中扮演着重要角色,通过标识目录为包、初始化包、控制导入行为、支持递归包结构以及定义包的命名空间,`__init__.py`文件为组织和管理Python代码提供了强大支持。理解并正确使用 `__init__.py`文件,可以帮助开发者更好地组织代码,提高代码的可维护性和可读性。
15 2
|
18天前
|
测试技术 数据安全/隐私保护 Python
探索Python中的装饰器:简化和增强你的函数
【10月更文挑战第24天】在Python编程的海洋中,装饰器是那把可以令你的代码更简洁、更强大的魔法棒。它们不仅能够扩展函数的功能,还能保持代码的整洁性。本文将带你深入了解装饰器的概念、实现方式以及如何通过它们来提升你的代码质量。让我们一起揭开装饰器的神秘面纱,学习如何用它们来打造更加优雅和高效的代码。
|
20天前
|
弹性计算 安全 数据处理
Python高手秘籍:列表推导式与Lambda函数的高效应用
列表推导式和Lambda函数是Python中强大的工具。列表推导式允许在一行代码中生成新列表,而Lambda函数则是用于简单操作的匿名函数。通过示例展示了如何使用这些工具进行数据处理和功能实现,包括生成偶数平方、展平二维列表、按长度排序单词等。这些工具在Python编程中具有高度的灵活性和实用性。
|
23天前
|
Python
python的时间操作time-函数介绍
【10月更文挑战第19天】 python模块time的函数使用介绍和使用。
27 4
|
24天前
|
存储 Python
[oeasy]python038_ range函数_大小写字母的起止范围_start_stop
本文介绍了Python中`range`函数的使用方法及其在生成大小写字母序号范围时的应用。通过示例展示了如何利用`range`和`for`循环输出指定范围内的数字,重点讲解了小写和大写字母对应的ASCII码值范围,并解释了`range`函数的参数(start, stop)以及为何不包括stop值的原因。最后,文章留下了关于为何`range`不包含stop值的问题,留待下一次讨论。
18 1
|
27天前
|
Java Python
> python知识点100篇系列(19)-使用python下载文件的几种方式
【10月更文挑战第7天】本文介绍了使用Python下载文件的五种方法,包括使用requests、wget、线程池、urllib3和asyncio模块。每种方法适用于不同的场景,如单文件下载、多文件并发下载等,提供了丰富的选择。
|
28天前
|
数据安全/隐私保护 流计算 开发者
python知识点100篇系列(18)-解析m3u8文件的下载视频
【10月更文挑战第6天】m3u8是苹果公司推出的一种视频播放标准,采用UTF-8编码,主要用于记录视频的网络地址。HLS(Http Live Streaming)是苹果公司提出的一种基于HTTP的流媒体传输协议,通过m3u8索引文件按序访问ts文件,实现音视频播放。本文介绍了如何通过浏览器找到m3u8文件,解析m3u8文件获取ts文件地址,下载ts文件并解密(如有必要),最后使用ffmpeg合并ts文件为mp4文件。
|
24天前
|
安全 数据处理 数据安全/隐私保护
python中mod函数怎么用
通过这些实例,我们不仅掌握了Python中 `%`运算符的基础用法,还领略了它在解决实际问题中的灵活性和实用性。在诸如云计算服务提供商的技术栈中,类似的数学运算逻辑常被应用于数据处理、安全加密等关键领域,凸显了基础运算符在复杂系统中的不可或缺性。
17 0