《Hadoop与大数据挖掘》一2.1.4 Hadoop资源管理—YARN

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介:

本节书摘来华章计算机《Hadoop与大数据挖掘》一书中的第2章 ,第2.1.4节,张良均 樊 哲 位文超 刘名军 许国杰 周 龙 焦正升 著 更多章节内容可以访问云栖社区“华章计算机”公众号查看。

2.1.4 Hadoop资源管理—YARN

在上一节中我们看到,当MapReduce发展到2.x时就不使用JobTracker来作为自己的资源管理框架,而选择使用YARN。这里需要说明的是,如果使用JobTracker来作为Hadoop集群的资源管理框架的话,那么除了MapReduce任务以外,不能够运行其他任务。也就是说,如果我们集群的MapReduce任务并没有那么饱满的话,集群资源等于是白白浪费的。所以提出了另外的一个资源管理架构YARN(Yet Another Resource Manager)。这里需要注意,YARN不是JobTracker的简单升级,而是“大换血”。同时Hadoop 2.X也包含了此架构。Apache Hadoop 2.X项目包含以下模块。

  • Hadoop Common:为Hadoop其他模块提供支持的基础模块。
  • HDFS: Hadoop:分布式文件系统。
  • YARN:任务分配和集群资源管理框架。

MapReduce:并行和可扩展的用于处理大数据的模式。
如图2-10所示,YARN资源管理框架包括ResourceManager(资源管理器)、Applica-tionMaster、NodeManager(节点管理器)。各个组件描述如下。

image


(1)ResourceManager
ResourceManager是一个全局的资源管理器,负责整个系统的资源管理和分配。它主要由两个组件构成:调度器(Scheduler)和应用程序管理器(ApplicationManager,AM)。
Scheduler负责分配最少但满足Application运行所需的资源量给Application。Scheduler只是基于资源的使用情况进行调度,并不负责监视/跟踪Application的状态,当然也不会处理失败的Task。
ApplicationManager负责处理客户端提交的Job以及协商第一个Container以供App-licationMaster运行,并且在ApplicationMaster失败的时候会重新启动ApplicationMaster(YARN中使用Resource Container概念来管理集群的资源,Resource Container是资源的抽象,每个Container包括一定的内存、IO、网络等资源)。
(2)ApplicationMaster
ApplicatonMaster是一个框架特殊的库,每个Application有一个ApplicationMaster,主要管理和监控部署在YARN集群上的各种应用。
(3)NodeManager
主要负责启动Resourcemanager分配给ApplicationMaster的Container,并且会监视Container的运行情况。在启动Container的时候,NodeManager会设置一些必要的环境变量以及相关文件;当所有准备工作做好后,才会启动该Container。启动后,NodeManager会周期性地监视该Container运行占用的资源情况,若是超过了该Container所声明的资源量,则会kill掉该Container所代表的进程。
如图2-11所示,该集群上有两个任务(对应Node2、Node6上面的AM),并且Node2上面的任务运行有4个Container来执行任务;而Node6上面的任务则有2个Container来执行任务。

相关文章
|
1月前
|
分布式计算 Kubernetes Hadoop
大数据-82 Spark 集群模式启动、集群架构、集群管理器 Spark的HelloWorld + Hadoop + HDFS
大数据-82 Spark 集群模式启动、集群架构、集群管理器 Spark的HelloWorld + Hadoop + HDFS
149 6
|
1月前
|
分布式计算 资源调度 Hadoop
大数据-80 Spark 简要概述 系统架构 部署模式 与Hadoop MapReduce对比
大数据-80 Spark 简要概述 系统架构 部署模式 与Hadoop MapReduce对比
65 2
|
16天前
|
资源调度 监控 大数据
大数据计算资源管理
【10月更文挑战第25天】
14 4
|
18天前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第27天】在大数据时代,数据湖技术凭借其灵活性和成本效益成为企业存储和分析大规模异构数据的首选。Hadoop和Spark作为数据湖技术的核心组件,通过HDFS存储数据和Spark进行高效计算,实现了数据处理的优化。本文探讨了Hadoop与Spark的最佳实践,包括数据存储、处理、安全和可视化等方面,展示了它们在实际应用中的协同效应。
63 2
|
19天前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第26天】本文详细探讨了Hadoop与Spark在大数据处理中的协同作用,通过具体案例展示了两者的最佳实践。Hadoop的HDFS和MapReduce负责数据存储和预处理,确保高可靠性和容错性;Spark则凭借其高性能和丰富的API,进行深度分析和机器学习,实现高效的批处理和实时处理。
57 1
|
1月前
|
分布式计算 Hadoop 大数据
大数据体系知识学习(一):PySpark和Hadoop环境的搭建与测试
这篇文章是关于大数据体系知识学习的,主要介绍了Apache Spark的基本概念、特点、组件,以及如何安装配置Java、PySpark和Hadoop环境。文章还提供了详细的安装步骤和测试代码,帮助读者搭建和测试大数据环境。
55 1
|
1月前
|
SQL 分布式计算 大数据
大数据平台的毕业设计01:Hadoop与离线分析
大数据平台的毕业设计01:Hadoop与离线分析
101 0
|
1月前
|
资源调度 分布式计算 大数据
大数据-111 Flink 安装部署 YARN部署模式 FlinkYARN模式申请资源、提交任务
大数据-111 Flink 安装部署 YARN部署模式 FlinkYARN模式申请资源、提交任务
91 0
|
机器学习/深度学习 分布式计算 大数据
|
1月前
|
存储 分布式计算 资源调度
大数据-04-Hadoop集群 集群群起 NameNode/DataNode启动 3台公网云 ResourceManager Yarn HDFS 集群启动 UI可视化查看 YarnUI(一)
大数据-04-Hadoop集群 集群群起 NameNode/DataNode启动 3台公网云 ResourceManager Yarn HDFS 集群启动 UI可视化查看 YarnUI(一)
75 5