受限波尔茨曼机RBM_DBN深度学习网络训练和测试matlab仿真,数据库为随机数矩阵

简介: 受限波尔茨曼机RBM_DBN深度学习网络训练和测试matlab仿真,数据库为随机数矩阵

1.算法概述

    受限波尔兹曼机(Restricted Boltzmann Machines,RBM)是一类具有两层结构、对称连接且无自反馈的随机神经网络模型,层间全连接,层内无连接。我们知道玻尔兹曼机的是全连接的,其结构如下图所示:

1.png

  受限玻尔兹曼机是玻尔兹曼机(Boltzman machine,BM)的一种特殊拓扑结构。BM的原理起源于统计物理学,是一种基于能量函数的建模方法,能够描述变量之间的高阶相互作用,BM的学习算法较复杂,但所建模型和学习算法有比较完备的物理解释和严格的数理统计理论作基础。BM是一种对称耦合的随机反馈型二值单元神经网络,由可见层和多个隐层组成,网络节点分为可见单元(visible unit)和隐单元(hidden unit),用可见单元和隐单元来表达随机网络与随机环境的学习模型,通过权值表达单元之间的相关性。

    上面一层神经元组成隐藏层(hidden layer), 用h向量隐藏层神经元的值。下面一层的神经元组成可见层(visible layer),用v向量表示可见层神经元的值。连接权重可以用矩阵W表示。和DNN的区别是,RBM不区分前向和反向,可见层的状态可以作用于隐藏层,而隐藏层的状态也可以作用于可见层。隐藏层的偏倚系数是向量b,而可见层的偏倚系数是向量a。

  常用的RBM一般是二值的,即不管是隐藏层还是可见层,它们的神经元的取值只为0或者1。

  RBM模型结构的结构:主要是权重矩阵W, 偏倚系数向量a和b,隐藏层神经元状态向量h和可见层神经元状态向量v。

   RBM是基于基于能量的概率分布模型。分为两个部分:第一部分是能量函数,第二部分是基于能量函数的概率分布函数。对于给定的状态向量h和v,则RBM当前的能量函数可以表示为:

2.png

   一旦 RBM 学到了与第一隐藏层激活值有关的输入数据的结构,那么数据就会沿着网络向下传递一层。你的第一个隐藏层就成为了新的可见层或输入层。这一层的激活值会和第二个隐藏层的权重相乘,以产生另一组的激活。

   络向下传递一层。你的第一个隐藏层就成为了新的可见层或输入层。这一层的激活值会和第二个隐藏层的权重相乘,以产生另一组的激活。

   这种通过特征分组创建激活值集合序列,并对特征组进行分组的过程是特征层次结构的基础,通过这个过程,神经网络学到了更复杂的、更抽象的数据表征。

2.仿真效果预览
matlab2022a仿真结果如下:
3.png

3.MATLAB程序

nodes = [32 16 8 4];
 
IN = rand(num,32);
OUT = rand(num,4);
 
dnn = randDBN( nodes );
%dnn = randDBN( nodes, 'BBPDBN' ); % ICPR 2014
%dnn = randDBN( nodes, 'GBDBN' );
nrbm = numel(dnn.rbm);
 
opts.MaxIter = 100;
opts.BatchSize = num/4;
opts.Verbose = true;
opts.StepRatio = 0.1;
opts.DropOutRate = 0.5;
opts.Object = 'CrossEntropy';
 
dnn = pretrainDBN(dnn, IN, opts);
dnn= SetLinearMapping(dnn, IN, OUT);
 
opts.Layer = 0;
[dnn,~,errr] = trainDBN(dnn, IN, OUT, opts);
rmse = CalcRmse(dnn, IN, OUT);
A004
相关文章
|
1月前
|
机器学习/深度学习 数据可视化 计算机视觉
目标检测笔记(五):详细介绍并实现可视化深度学习中每层特征层的网络训练情况
这篇文章详细介绍了如何通过可视化深度学习中每层特征层来理解网络的内部运作,并使用ResNet系列网络作为例子,展示了如何在训练过程中加入代码来绘制和保存特征图。
57 1
目标检测笔记(五):详细介绍并实现可视化深度学习中每层特征层的网络训练情况
|
1月前
|
机器学习/深度学习 编解码 监控
目标检测实战(六): 使用YOLOv8完成对图像的目标检测任务(从数据准备到训练测试部署的完整流程)
这篇文章详细介绍了如何使用YOLOv8进行目标检测任务,包括环境搭建、数据准备、模型训练、验证测试以及模型转换等完整流程。
1227 1
目标检测实战(六): 使用YOLOv8完成对图像的目标检测任务(从数据准备到训练测试部署的完整流程)
|
1月前
|
机器学习/深度学习 监控 计算机视觉
目标检测实战(八): 使用YOLOv7完成对图像的目标检测任务(从数据准备到训练测试部署的完整流程)
本文介绍了如何使用YOLOv7进行目标检测,包括环境搭建、数据集准备、模型训练、验证、测试以及常见错误的解决方法。YOLOv7以其高效性能和准确率在目标检测领域受到关注,适用于自动驾驶、安防监控等场景。文中提供了源码和论文链接,以及详细的步骤说明,适合深度学习实践者参考。
313 0
目标检测实战(八): 使用YOLOv7完成对图像的目标检测任务(从数据准备到训练测试部署的完整流程)
|
1月前
|
机器学习/深度学习 并行计算 数据可视化
目标分类笔记(二): 利用PaddleClas的框架来完成多标签分类任务(从数据准备到训练测试部署的完整流程)
这篇文章介绍了如何使用PaddleClas框架完成多标签分类任务,包括数据准备、环境搭建、模型训练、预测、评估等完整流程。
87 0
目标分类笔记(二): 利用PaddleClas的框架来完成多标签分类任务(从数据准备到训练测试部署的完整流程)
|
1月前
|
机器学习/深度学习 JSON 算法
语义分割笔记(二):DeepLab V3对图像进行分割(自定义数据集从零到一进行训练、验证和测试)
本文介绍了DeepLab V3在语义分割中的应用,包括数据集准备、模型训练、测试和评估,提供了代码和资源链接。
186 0
语义分割笔记(二):DeepLab V3对图像进行分割(自定义数据集从零到一进行训练、验证和测试)
|
1月前
|
机器学习/深度学习 数据采集 算法
目标分类笔记(一): 利用包含多个网络多种训练策略的框架来完成多目标分类任务(从数据准备到训练测试部署的完整流程)
这篇博客文章介绍了如何使用包含多个网络和多种训练策略的框架来完成多目标分类任务,涵盖了从数据准备到训练、测试和部署的完整流程,并提供了相关代码和配置文件。
47 0
目标分类笔记(一): 利用包含多个网络多种训练策略的框架来完成多目标分类任务(从数据准备到训练测试部署的完整流程)
|
1月前
|
机器学习/深度学习 XML 并行计算
目标检测实战(七): 使用YOLOX完成对图像的目标检测任务(从数据准备到训练测试部署的完整流程)
这篇文章介绍了如何使用YOLOX完成图像目标检测任务的完整流程,包括数据准备、模型训练、验证和测试。
158 0
目标检测实战(七): 使用YOLOX完成对图像的目标检测任务(从数据准备到训练测试部署的完整流程)
|
1月前
|
计算机视觉 异构计算
目标检测实战(四):YOLOV4-Tiny 源码训练、测试、验证详细步骤
这篇文章详细介绍了使用YOLOv4-Tiny进行目标检测的实战步骤,包括下载源码和权重文件、配置编译环境、进行简单测试、训练VOC数据集、生成训练文件、准备训练、开始训练以及多GPU训练的步骤。文章还提供了相应的代码示例,帮助读者理解和实践YOLOv4-Tiny模型的训练和测试过程。
113 0
|
3月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
199 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
3月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
128 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现