操作系统实验五 基于内核栈切换的进程切换(哈工大李治军)(二)

简介: 操作系统实验五 基于内核栈切换的进程切换(哈工大李治军)(二)

schedule 与 switch_to


目前 Linux 0.11 中工作的 schedule() 函数是首先找到下一个进程的数组位置 next,而这个 next 就是 GDT 中的 n,所以这个 next 是用来找到切换后目标 TSS 段的段描述符的,一旦获得了这个 next 值,直接调用上面剖析的那个宏展开 switch_to(next);就能完成如图 TSS 切换所示的切换了。


现在,我们不用 TSS 进行切换,而是采用切换内核栈的方式来完成进程切换,所以在新的 switch_to 中将用到当前进程的 PCB、目标进程的 PCB、当前进程的内核栈、目标进程的内核栈等信息。由于 Linux 0.11 进程的内核栈和该进程的 PCB 在同一页内存上(一块 4KB 大小的内存),其中 PCB 位于这页内存的低地址,栈位于这页内存的高地址;另外,由于当前进程的 PCB 是用一个全局变量 current 指向的,所以只要告诉新 switch_to()函数一个指向目标进程 PCB 的指针就可以了。同时还要将 next 也传递进去,虽然 TSS(next)不再需要了,但是 LDT(next)仍然是需要的,也就是说,现在每个进程不用有自己的 TSS 了,因为已经不采用 TSS 进程切换了,但是每个进程需要有自己的 LDT,地址分离地址还是必须要有的,而进程切换必然要涉及到 LDT 的切换。


综上所述,需要将目前的 schedule() 函数(在 kernel/sched.c 中)做稍许修改,即将下面的代码:

if ((*p)->state == TASK_RUNNING && (*p)->counter > c)
    c = (*p)->counter, next = i;
//......
switch_to(next);


修改为:

if ((*p)->state == TASK_RUNNING && (*p)->counter > c)
    c = (*p)->counter, next = i, pnext = *p;
//.......
switch_to(pnext,_LDT(next));


注意 pnext 是指向 pcb 的指针

struct tast_struct *pnext = &(init_task.task);


使用 switch_to 需要添加函数声明

extern long switch_to(struct task_struct *p, unsigned long address);


实现 switch_to


实现 switch_to 是本次实践项目中最重要的一部分。


由于要对内核栈进行精细的操作,所以需要用汇编代码来完成函数 switch_to 的编写。


这个函数依次主要完成如下功能:由于是 C 语言调用汇编,所以需要首先在汇编中处理栈帧,即处理 ebp 寄存器;接下来要取出表示下一个进程 PCB 的参数,并和 current 做一个比较,如果等于 current,则什么也不用做;如果不等于 current,就开始进程切换,依次完成 PCB 的切换、TSS 中的内核栈指针的重写、内核栈的切换、LDT 的切换以及 PC 指针(即 CS:EIP)的切换。


可以很明显的看出,该函数是基于TSS进行进程切换的(ljmp指令),

现在要改写成基于堆栈(内核栈)切换的函数,就需要删除掉该语句,在include/linux/sched.h 文件,我们将它注释掉。



然后新的switch_to()函数将它作为一个系统调用函数,所以要将函数重写在汇编文件kernel/system_call.s:


.align 2
switch_to:
    //因为该汇编函数要在c语言中调用,所以要先在汇编中处理栈帧
  pushl %ebp
  movl %esp,%ebp
  pushl %ecx
  pushl %ebx
  pushl %eax
    //先得到目标进程的pcb,然后进行判断
    //如果目标进程的pcb(存放在ebp寄存器中) 等于   当前进程的pcb => 不需要进行切换,直接退出函数调用
    //如果目标进程的pcb(存放在ebp寄存器中) 不等于 当前进程的pcb => 需要进行切换,直接跳到下面去执行
  movl 8(%ebp),%ebx
  cmpl %ebx,current
  je 1f
    /** 执行到此处,就要进行真正的基于堆栈的进程切换了 */
        // PCB的切换
  movl %ebx,%eax
  xchgl %eax,current
  // TSS中内核栈指针的重写
  movl tss,%ecx
  addl $4096,%ebx
  movl %ebx,ESP0(%ecx)
  //切换内核栈
  movl %esp,KERNEL_STACK(%eax)
  movl 8(%ebp),%ebx
  movl KERNEL_STACK(%ebx),%esp
  //LDT的切换
  movl 12(%ebp),%ecx
  lldt %cx
  movl $0x17,%ecx
  mov %cx,%fs
  cmpl %eax,last_task_used_math
  jne 1f
  clts
  //在到子进程的内核栈开始工作了,接下来做的四次弹栈以及ret处理使用的都是子进程内核栈中的东西
1:  popl %eax
  popl %ebx
  popl %ecx
  popl %ebp
  ret



逐条解释基于堆栈切换的switch_to()函数四段核心代码:

// PCB的切换
movl %ebx,%eax
xchgl %eax,current
起始时eax寄存器保存了指向目标进程的指针,current指向了当前进程,
第一条指令执行完毕,使得ebx也指向了目标进程,
然后第二条指令开始执行,也就是将eax的值和current的值进行了交换,最终使得eax指向了当前进程,current就指向了目标进程(当前状态就发生了转移)
// TSS中内核栈指针的重写
movl tss,%ecx
addl $4096,%ebx
movl %ebx,ESP0(%ecx)
中断处理时需要寻找当前进程的内核栈,否则就不能从用户栈切到内核栈(中断处理没法完成),
内核栈的寻找是借助当前进程TSS中存放的信息来完成的,(当然,当前进程的TSS还是通过TR寄存器在GDT全局描述符表中找到的)。
虽然此时不使用TSS进行进程切换了,但是Intel的中断处理机制还是要保持。
所以每个进程仍然需要一个TSS,操作系统需要有一个当前TSS。
这里采用的方案是让所有进程共用一个TSS(这里使用0号进程的TSS),
因此需要定义一个全局指针变量tss(放在system_call.s中)来执行0号进程的TSS:
struct tss_struct * tss = &(init_task.task.tss);
此时唯一的tss的目的就是:在中断处理时,能够找到当前进程的内核栈的位置。
在内核栈指针重写指令中有宏定义ESP0,所以在上面需要提前定义好 ESP0 = 4,
(定义为4是因为TSS中内核栈指针ESP0就放在偏移为4的地方)
并且需要将: blocked=(33*16) => blocked=(33*16+4)


kernel/system_call.s 文件


重写TSS中的内核栈指针

ESP0 = 4
KERNEL_STACK = 12
state   = 0     # these are offsets into the task-struct.
counter = 4
priority = 8
kernelstack = 12
signal  = 16
sigaction = 20      # MUST be 16 (=len of sigaction)
blocked = (37*16)


kernel/sched.c 文件

struct tss_struct * tss = &(init_task.task.tss);

//切换内核栈
movl %esp,KERNEL_STACK(%eax)
movl 8(%ebp),%ebx
movl KERNEL_STACK(%ebx),%esp
第一行:将cpu寄存器esp的值,保存到当前进程pcb的eax寄存器中(保存当前进程执行信息)
第二行:获取目标进程的pcb放入ebx寄存器中
第三行:将ebx寄存器中的信息,也就是目标进程的信息,放入cpu寄存器esp中
但是之前的进程控制块(pcb)中是没有保存内核栈信息的寄存器的,所以需要在sched.h中的task_struct(也就是pcb)中添加kernelstack,
但是添加的位置就有讲究了,因为在某些汇编文件(主要是systen_call.s中),有操作这个结构的硬编码,
一旦结构体信息改变,那这些硬编码也要跟着改变,
比如添加kernelstack在第一行,就需要改很多信息了,
但是添加到第四行就不需要改很多信息,所以这里将kernelstack放到第四行的位置:
struct task_struct {
/* these are hardcoded - don't touch */
  long state; /* -1 unrunnable, 0 runnable, >0 stopped */
  long counter;
  long priority;
  /** add  kernelstack */
  long kernelstack;
    ...
}
改动位置及信息:
#define INIT_TASK \
/* state etc */ { 0,15,15,\
/* signals */ 0,{{},},0, \
...
改为:
#define INIT_TASK \
/* state etc */ { 0,15,15, PAGE_SIZE+(long)&init_task,\
/* signals */ 0,{{},},0, \
...
在执行上述切换内核栈的代码之前(也就是switch_to()函数前),要设置栈的大小:KERNEL_STACK = 12
然后就执行上面的三行代码,就可以完成对内核栈的切换了。


include/linux/sched.h 文件

long kernelstack;


由于这里将 PCB 结构体的定义改变了,所以在产生 0 号进程的 PCB 初始化时也要跟着一起变化, 需要修改 #define INIT_TASK,即在 PCB 的第四项中增加关于内核栈栈指针的初始化。代码如下:

#define INIT_TASK \
/* state etc */ { 0,15,15,\
/* signals */ 0,{{},},0, \
...
改为:
#define INIT_TASK \
/* state etc */ { 0,15,15, PAGE_SIZE+(long)&init_task,\
/* signals */ 0,{{},},0, \
...



kernel/system_call.s

KERNEL_STACK = 12


//LDT的切换
movl 12(%ebp),%ecx
lldt %cx
movl $0x17,%ecx
mov %cx,%fs
前两条语句的作用(切换LDT):
第一条:取出参数LDT(next)
第二条:完成对LDTR寄存器的修改
然后就是对PC指针(即CS:EIP)的切换:
后两条语句的含有就是重写设置段寄存器FS的值为0x17
补:FS的作用:通过FS操作系统才能访问进程的用户态内存。
这里LDT切换完成意味着切换到了新的用户态地址空间,所以需要重置FS。
目录
相关文章
|
21天前
|
算法 调度 UED
深入理解操作系统:进程调度与优先级队列
【10月更文挑战第31天】在计算机科学的广阔天地中,操作系统扮演着枢纽的角色,它不仅管理着硬件资源,还为应用程序提供了运行的环境。本文将深入浅出地探讨操作系统的核心概念之一——进程调度,以及如何通过优先级队列来优化资源分配。我们将从基础理论出发,逐步过渡到实际应用,最终以代码示例巩固知识点,旨在为读者揭开操作系统高效管理的神秘面纱。
|
14天前
|
消息中间件 安全 算法
深入理解操作系统:进程管理的艺术
【10月更文挑战第38天】在数字世界的心脏,操作系统扮演着至关重要的角色。它不仅是硬件与软件的桥梁,更是维持计算机运行秩序的守夜人。本文将带你走进操作系统的核心——进程管理,探索它是如何协调和优化资源的使用,确保系统的稳定与高效。我们将从进程的基本概念出发,逐步深入到进程调度、同步与通信,最后探讨进程安全的重要性。通过这篇文章,你将获得对操作系统进程管理的全新认识,为你的计算机科学之旅增添一份深刻的理解。
|
18天前
|
算法 调度 UED
深入理解操作系统:进程管理与调度策略
【10月更文挑战第34天】本文旨在探讨操作系统中至关重要的一环——进程管理及其调度策略。我们将从基础概念入手,逐步揭示进程的生命周期、状态转换以及调度算法的核心原理。文章将通过浅显易懂的语言和具体实例,引导读者理解操作系统如何高效地管理和调度进程,保证系统资源的合理分配和利用。无论你是初学者还是有一定经验的开发者,这篇文章都能为你提供新的视角和深入的理解。
38 3
|
20天前
|
Linux 调度 C语言
深入理解操作系统:进程和线程的管理
【10月更文挑战第32天】本文旨在通过浅显易懂的语言和实际代码示例,带领读者探索操作系统中进程与线程的奥秘。我们将从基础知识出发,逐步深入到它们在操作系统中的实现和管理机制,最终通过实践加深对这一核心概念的理解。无论你是编程新手还是希望复习相关知识的资深开发者,这篇文章都将为你提供有价值的见解。
|
21天前
|
算法 调度 UED
深入理解操作系统的进程调度机制
本文旨在探讨操作系统中至关重要的组成部分之一——进程调度机制。通过详细解析进程调度的概念、目的、类型以及实现方式,本文为读者提供了一个全面了解操作系统如何高效管理进程资源的视角。此外,文章还简要介绍了几种常见的进程调度算法,并分析了它们的优缺点,旨在帮助读者更好地理解操作系统内部的复杂性及其对系统性能的影响。
|
22天前
|
算法 Linux 定位技术
Linux内核中的进程调度算法解析####
【10月更文挑战第29天】 本文深入剖析了Linux操作系统的心脏——内核中至关重要的组成部分之一,即进程调度机制。不同于传统的摘要概述,我们将通过一段引人入胜的故事线来揭开进程调度算法的神秘面纱,展现其背后的精妙设计与复杂逻辑,让读者仿佛跟随一位虚拟的“进程侦探”,一步步探索Linux如何高效、公平地管理众多进程,确保系统资源的最优分配与利用。 ####
61 4
|
22天前
深入理解操作系统:进程与线程的管理
【10月更文挑战第30天】操作系统是计算机系统的核心,它负责管理计算机硬件资源,为应用程序提供基础服务。本文将深入探讨操作系统中进程和线程的概念、区别以及它们在资源管理中的作用。通过本文的学习,读者将能够更好地理解操作系统的工作原理,并掌握进程和线程的管理技巧。
36 2
|
22天前
|
消息中间件 算法 Linux
深入理解操作系统之进程管理
【10月更文挑战第30天】在数字时代的浪潮中,操作系统作为计算机系统的核心,扮演着至关重要的角色。本文将深入浅出地探讨操作系统中的进程管理机制,从进程的概念入手,逐步解析进程的创建、调度、同步与通信等关键过程,并通过实际代码示例,揭示这些理论在Linux系统中的应用。文章旨在为读者提供一扇窥探操作系统深层工作机制的窗口,同时激发对计算科学深层次理解的兴趣和思考。
|
23天前
|
缓存 负载均衡 算法
Linux内核中的进程调度算法解析####
本文深入探讨了Linux操作系统核心组件之一——进程调度器,着重分析了其采用的CFS(完全公平调度器)算法。不同于传统摘要对研究背景、方法、结果和结论的概述,本文摘要将直接揭示CFS算法的核心优势及其在现代多核处理器环境下如何实现高效、公平的资源分配,同时简要提及该算法如何优化系统响应时间和吞吐量,为读者快速构建对Linux进程调度机制的认知框架。 ####
|
19天前
|
消息中间件 算法 调度
深入理解操作系统:进程管理的艺术
【10月更文挑战第33天】本文旨在揭示操作系统中进程管理的神秘面纱,带领读者从理论到实践,探索进程调度、同步以及通信的精妙之处。通过深入浅出的解释和直观的代码示例,我们将一起踏上这场技术之旅,解锁进程管理的秘密。
21 0
下一篇
无影云桌面