- 为什么计算机要使用二进制数制?
所谓数制其实就是一种 “计数的进位方式”。
常见的数制有十进制、二进制、八进制和十六进制:
十进制是我们日常生活中最熟悉的进位方式,它一共有 0、1、2、3、4、5、6、7、8 和 9 十个符号。在计数的过程中,当某一位满 10 时,就需要向它临近的高位进一,即逢十进一;
二进制是程序员更熟悉的进位方式,也是随着计算机的诞生而发展起来的,它只有 0 和 1 两个符号。在计数的过程中,当某一位满 2 时,就需要向它临近的高位进一,即逢二进一;
八进制和十六进制同理。
那么,为什么计算机要使用二进制数制,而不是人类更熟悉的十进制呢?其原因在于二进制只有两种状态,制造只有 2 个稳定状态的电子元器件可以使用高低电位或有无脉冲区分,而相比于具备多个状态的电子元器件会更加稳定可靠。
2.有符号数与无符号数
在计算机中会区分有符号数和无符号数,无符号数不需要考虑符号,可以将数字编码中的每一位都用来存放数值。有符号数需要考虑正负性,然而计算机是无法识别符号的 “正+” 或 “负-” 标志的,那怎么办呢?
好在我们发现 “正 / 负” 是两种截然不同的状态,正好可以映射到计算机能够理解的 “0 / 1” 上。因此,我们可以直接 “将符号数字化”,将 “正+” 数字化为 “0”,将 “负-” 数字化为 “1”,并将数字化后的符号和数值共同组成数字编码。
另外,为了计算方便,我们额外再规定将 “符号位” 放在数字编码的 “最高位”。例如,+1110 和 -1110 用 8 位二进制表示就是:
0000, 1110(符号作为编码的一部分,最高位 0 表示正数)
1000, 1110(符号作为编码的一部分,最高位 1 表示负数)
从中我们也可以看出无符号数和有符号数的区别:
1、最高位功能不同: 无符号数的编码中的每一位都可以用来存放数值信息,而有符号数需要在编码的最高位留出一位符号位;
2、数值范围不同: 相同位数下有符号数和无符号数表示的数值范围不同。以 16 位数为例,无符号数可以表示 0~65536,而有符号数可以表示 -32768~32768。
提示: 无符号数和有符号数表示的数值范围大小是一样大的,n 位二进制最多只能表示 $2^n$ 个信息量,这是无法被突破的。