RCNN目标检测算法内容详解(依托论文讲解)

简介: RCNN目标检测算法内容详解(依托论文讲解)

作为目标检测的开山鼻祖,对于RCNN的学习一定是有里程碑的意义的,RCNN的横空出世让我们对神经网络有了更深的认识,在CNN识别盛行的年代开创了先河,因此了解RCNN对于我们学习目标检测算法有非常重大的意义。


image.png


我在学习目标检测算法的时候,发现有些概念总是模糊不清,因为我是直接学习yolo系列的,但是学了好几遍总感觉差点什么,对于一些大佬给我的建议是要重头撸一遍目标检测算法,RCNN作为目标检测的第一个算法,他的出现影响了后续一大堆目标检测算法,因此我打算从RCNN开始将经典的目标检测算法都学习一下,同时也会写下随笔博客,对于文中不对的地方欢迎大家批评指正。


这里有个很有意思的论文翻译,对于阅读英文论文有困难的同学,可以看一下


R-CNN论文详解(论文翻译)_目标检测_v1_vivian-DevPress官方社区


RCNN算法结构:

RCNN算法总的分为如下四步:如下图所示


image.png


1、使用Selective Search(选择性搜索)算法,将图片生成1K-2K个Region propsals:

可以理解成就是根据SS算法的方法将图片分成2000个可能含有目标的候选框


2、对于每个生成的Region propsals,使用深度网络提取feature:

       我们将图像切割成了2000个区域,那就相当于产生了2000个小图片,然后我们将这2000个小图片打入神经网络进行训练,就是所谓的用CNN提取这2000个小图片的特征。


       RCNN这里使用的CNN神经网络是Alexnet神经网络,然而这里出现了一个问题就是Alexnet网络的输入均为277*277大小的图片,但是我们切割的2000个候选区域不一定是刚好符合这个大小的,因此作者在这里对着2000个图片进行了resize,即将所有的候选区域小图片均调整为了277*277,然后再在候选区域周围加上了16的padding,再进行异性缩放,作者在文中指出这种方法使得RCNN的mAp提高了3到5个百分点。


      另外在这里需要解释一下,我们使用的Alexnet卷积神经网络是迁移学习过的,因为如果从头开始训练一个网络的话,数据量太小效果会很差,因此我们使用迁移学习的方法训练我们的网络。


3、将feature送入每一类对应的SVM支持向量机:

    如果bounding box 没包含到车辆部分叫正样本;如果bounding box 没有包含到车辆的某部分,我们称它为负样本。接触过目标检测的同学们都知道,正负样本的区分是需要阈值划分的,划分的基础是IOU(IOU不知道是啥的自行百度),作者测试了IoU阈值的多个值, 0.1, 0.2, 0.3, 0.4, 0.5 。最后通过测试发现,IOU阈值为0.3效果最好(选择为0精度下降了4个百分点,选择0.5精度下降了5个百分点),即当重叠度小于0.3的时候,我们就把它标注为负样本。



    到这里我们的RCNN已经在经过Alexnet神经网络之后提取到了我们想要的特征,因为作者在Alexnet最后一层中去掉了全连接层,因此我们这个特征即为2000*4096-D的向量(D为物体的种类+背景),然后我们将这D类的特征向量送入D个SVM进行训练,(这里解释一下,因为SVM只能做二分类,因此我们需要建立D个SVM分类器对特征向量进行打分),注意这个打分很重要,这D个SVM的打分又会组成一个新的特征向量,同时SVM训练过程是将打分和真实的label进行比较,计算出loss然后再对SVM进行反复训练。


    另外在这里需要解释一下,RCNN在这里用到了一个比较特别的算法叫做hard negative mining方法(因为刚开始训练的时候,很多情况下负样本远远高于正样本,这样会导致训练的优化过程很慢,hard negative mining算法是将经过一轮训练后得分最高,即最容易被误判的负样本加入新的样本训练集,进行再次训练,重复上述步骤,直到算法收敛)。hard negative mining方法的作用就是去掉负样本中对优化作用影响很小的负样本,保留最接近阈值(最接近正样本容易分辨错误的负样本)。


4、最后使用回归算法对候选框进行微调,然后进行NMS(非极大值抑制选出最合适的候选框):

image.png


Selective search算法会生成1K~2K的候选区域,这些候选区域存在这种那种的问题,因此我们需要在最后一步对候选框进行微调。在RCNN中,作者使用线性回归器对候选框位置进行微调,得到更加准确的候选框。训练样本:判定为本类的候选框中和真值重叠面积大于0.6 的候选框。


NMS(非极大值抑制的过程)首先我们需要先计算出每一个bounding box的面积,然后根据它的score进行排序,把score最大的bounding box作为我们选定的框,然后计算其余bounding box与我们上述最大score与box的IoU,删除IoU大于设定的阈值的bounding box。反复进行上述过程,直至所有bounding box用完,然后再删除score小于一定阈值的选定框。


这就是RCNN的全部过程了,后续会更新其他系列的RCNN的文章,欢迎关注


相关文章
|
3月前
|
监控 安全 算法
137_安全强化:输入过滤与水印 - 实现输出水印的检测算法与LLM安全防护最佳实践
随着大语言模型(LLM)在各行业的广泛应用,安全问题日益凸显。从提示注入攻击到恶意输出生成,从知识产权保护到内容溯源,LLM安全已成为部署和应用过程中不可忽视的关键环节。在2025年的LLM技术生态中,输入过滤和输出水印已成为两大核心安全技术,它们共同构建了LLM服务的安全防护体系。
|
3月前
|
存储 机器学习/深度学习 编解码
双选择性信道下正交啁啾分复用(OCDM)的低复杂度均衡算法研究——论文阅读
本文提出统一相位正交啁啾分复用(UP-OCDM)方案,利用循环矩阵特性设计两种低复杂度均衡算法:基于带状近似的LDL^H分解和基于BEM的迭代LSQR,将复杂度由$O(N^3)$降至$O(NQ^2)$或$O(iNM\log N)$,在双选择性信道下显著提升高频谱效率与抗多普勒性能。
228 0
双选择性信道下正交啁啾分复用(OCDM)的低复杂度均衡算法研究——论文阅读
|
5月前
|
机器学习/深度学习 算法 数据挖掘
没发论文的注意啦!重磅更新!GWO-BP-AdaBoost预测!灰狼优化、人工神经网络与AdaBoost集成学习算法预测研究(Matlab代码实现)
没发论文的注意啦!重磅更新!GWO-BP-AdaBoost预测!灰狼优化、人工神经网络与AdaBoost集成学习算法预测研究(Matlab代码实现)
188 0
|
4月前
|
传感器 资源调度 算法
DDMA-MIMO雷达多子带相干累积目标检测算法——论文阅读
本文提出一种多子带相干累积(MSCA)算法,通过引入空带和子带相干处理,解决DDMA-MIMO雷达的多普勒模糊与能量分散问题。该方法在低信噪比下显著提升检测性能,实测验证可有效恢复目标速度,适用于车载雷达高精度感知。
589 4
DDMA-MIMO雷达多子带相干累积目标检测算法——论文阅读
|
3月前
|
开发框架 算法 .NET
基于ADMM无穷范数检测算法的MIMO通信系统信号检测MATLAB仿真,对比ML,MMSE,ZF以及LAMA
简介:本文介绍基于ADMM的MIMO信号检测算法,结合无穷范数优化与交替方向乘子法,降低计算复杂度并提升检测性能。涵盖MATLAB 2024b实现效果图、核心代码及详细注释,并对比ML、MMSE、ZF、OCD_MMSE与LAMA等算法。重点分析LAMA基于消息传递的低复杂度优势,适用于大规模MIMO系统,为通信系统检测提供理论支持与实践方案。(238字)
|
4月前
|
机器学习/深度学习 算法 算法框架/工具
256KB内存约束下的设备端训练:算法与系统协同设计——论文解读
MIT与MIT-IBM Watson AI Lab团队提出一种创新方法,在仅256KB SRAM和1MB Flash的微控制器上实现深度神经网络训练。该研究通过量化感知缩放(QAS)、稀疏层/张量更新及算子重排序等技术,将内存占用降至141KB,较传统框架减少2300倍,首次突破设备端训练的内存瓶颈,推动边缘智能发展。
309 6
|
5月前
|
人工智能 算法 安全
【博士论文】基于局部中心量度的聚类算法研究(Matlab代码实现)
【博士论文】基于局部中心量度的聚类算法研究(Matlab代码实现)
172 0
|
7月前
|
机器学习/深度学习 运维 监控
实时异常检测实战:Flink+PAI 算法模型服务化架构设计
本文深入探讨了基于 Apache Flink 与阿里云 PAI 构建的实时异常检测系统。内容涵盖技术演进、架构设计、核心模块实现及金融、工业等多领域实战案例,解析流处理、模型服务化、状态管理等关键技术,并提供性能优化与高可用方案,助力企业打造高效智能的实时异常检测平台。
547 1
|
6月前
|
存储 监控 算法
基于跳表数据结构的企业局域网监控异常连接实时检测 C++ 算法研究
跳表(Skip List)是一种基于概率的数据结构,适用于企业局域网监控中海量连接记录的高效处理。其通过多层索引机制实现快速查找、插入和删除操作,时间复杂度为 $O(\log n)$,优于链表和平衡树。跳表在异常连接识别、黑名单管理和历史记录溯源等场景中表现出色,具备实现简单、支持范围查询等优势,是企业网络监控中动态数据管理的理想选择。
182 0
|
4月前
|
机器学习/深度学习 传感器 数据采集
基于贝叶斯优化CNN-LSTM混合神经网络预测(Matlab代码实现)
基于贝叶斯优化CNN-LSTM混合神经网络预测(Matlab代码实现)
684 0

热门文章

最新文章